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Abstract— Fashion Compatibility Modeling (FCM), which aims
to automatically evaluate whether a given set of fashion items
makes a compatible outfit, has attracted increasing research
attention. Recent studies have demonstrated the benefits of
conducting the item representation disentanglement towards
FCM. Although these efforts have achieved prominent progress,
they still perform unsatisfactorily, as they mainly investigate the
visual content of fashion items, while overlooking the semantic
attributes of items (e.g., color and pattern), which could largely
boost the model performance and interpretability. To address this
issue, we propose to comprehensively explore the visual content
and attributes of fashion items towards FCM. This problem is
non-trivial considering the following challenges: a) how to utilize
the irregular attribute labels of items to partially supervise the
attribute-level representation learning of fashion items; b) how to
ensure the intact disentanglement of attribute-level representa-
tions; and c) how to effectively sew the multiple granulairites
(i.e, coarse-grained item-level and fine-grained attribute-level)
information to enable performance improvement and inter-
pretability. To address these challenges, in this work, we present
a partially supervised outfit compatibility modeling scheme
(PS-OCM). In particular, we first devise a partially supervised
attribute-level embedding learning component to disentangle the
fine-grained attribute embeddings from the entire visual feature
of each item. We then introduce a disentangled completeness
regularizer to prevent the information loss during disentangle-
ment. Thereafter, we design a hierarchical graph convolutional
network, which seamlessly integrates the attribute- and item-
level compatibility modeling, and enables the explainable com-
patibility reasoning. Extensive experiments on the real-world
dataset demonstrate that our PS-OCM significantly outperforms
the state-of-the-art baselines. We have released our source
codes and well-trained models to benefit other researchers
(https://site2750.wixsite.com/ps-ocm).

Index Terms— Partial supervision, disentangled representation,
fashion compatibility estimation, graph convolutional network.
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Fig. 1. Illustration of fashion items and their attribute labels.

I. INTRODUCTION

ALONG with the economic development, numerous fash-
ion products have sprung up in the virtual and physical

shops, such as bags, scarves, shoes, and skirts. Undoubtedly,
they do beautify our lives. Nevertheless, they also bring in
many troubles, especially for those who lack the sense of
beauty. Moreover, people are easily overwhelmed by the abun-
dant fashion items, thus it is difficult to find the desired fashion
piece to make a compatible outfit with their wardrobe [1], [2].
Consequently, fashion compatibility modeling, which justifies
whether the given set of fashion items makes a compatible
outfit, is highly desired.

Owing to this practical value, fashion compatibility mod-
eling has attracted increasing research attention. Over the
past few years, many deep learning approaches have been
explored [3]–[8]. Due to that people tend to habitually justify
the compatibility of fashion items by considering a series of
attribute-oriented questions, like whether the color/material of
all composing items are compatible, a few recent studies have
resorted to investigating the attribute-level representations by
representation disentanglement [9], [10]. Despite their promis-
ing performance, they still have a key limitation: they mainly
focus on the visual content of fashion items, while overlooking
the item’s semantic attributes. In fact, the attribute labels of
items usually contain rich information that characterizes the
key parts of the items [11]–[15], which can be adopted to
supervise the attribute-level representation learning, and hence
promoting the model’s performance as well as interpretability.
In light of this, we aim to jointly explore the visual content
and semantic attributes of fashion items.

However, fulfilling this goal is non-trivial due to the fol-
lowing challenges. 1) The attribute labels of fashion items
are not unified or aligned. In other words, each item may
have different attribute labels. For instance, as shown in
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Figure 1, one T-shirt is labeled with attributes of price, sleeve
length, design, and brand; while the other has color, mater-
ial, brand, and price. Thereby, how to fully take advantage
of these irregular attribute labels to partially supervise the
attribute-level representation learning of fashion items poses
a big challenge. 2) When disentangling the entire visual
embedding into multiple attribute-level representations, how
to ensure information intactness during the disentanglement
is another challenge. 3) To comprehensively capture the com-
patibility among fashion items, we should incorporate both
the coarse-grained item-level and fine-grained attribute-level
information into the compatibility modeling. Accordingly, how
to seamlessly sew multiple granularities to strengthen the
learning performance constitutes another tough challenge.

To address these challenges, we present a partially super-
vised compatibility modeling scheme (PS-OCM). As shown
in Figure 2, it consists of three key components: 1) partially
supervised attribute-level embedding learning, 2) disentangled
completeness regularization, and 3) hierarchical outfit com-
patibility modeling. To be more specific, the first component
extracts visual features from each composing item of the given
outfit via a pretrained model. It then turns to disentangle the
visual feature vector into a set of fine-grained attribute embed-
dings, which is partially supervised by the irregular attribute
labels of each fashion item. As to the second component,
it works towards an intact disentanglement. This is accom-
plished by adopting two strategies: orthogonal residual embed-
ding and visual representation reconstruction. An orthogonal
residual embedding is introduced to compensate the informa-
tion loss, and regularize the orthogonal relationship between
the residual embedding and each attribute-level embedding.
Meanwhile, it uses the deconvolution neural network to ensure
that the original image can be reconstructed from the dis-
entangled attribute-level and residual embeddings. As to the
last component, it contains a hierarchical graph convolutional
network, which models the outfit compatibility by jointly
integrating the fine-grained attribute-level and coarse-grained
item-level information. Ultimately, it fuses the attribute-level
compatibility scores and the item-level one via a multi-layer
perceptron (MLP) to derive the final compatibility score of the
given outfit.

Our main contributions can be summarized in threefold:

• We disentangle the visual representation of each item into
a set of attribute-level embeddings, and present a partially
supervised disentangled learning method to strengthen the
learning performance via taking advantage of the irregular
attribute labels.

• To prevent information loss during the disentanglement,
we devise a novel disentangled completeness regular-
izer, which is accomplished by jointly introducing an
orthogonal residual embedding and visual representation
reconstruction.

• We propose a hierarchical graph convolutional network,
which is able to seamlessly integrate the attribute-
and item-level compatibility modeling. Most importantly,
based upon the convolutional results, we are able to
intuitively explain the attribute-level compatibility.

The rest of the paper is organized as follows. Section 2
briefly reviews the related work. In Section 3, we detail the
proposed PS-OCM scheme. Experimental results and compre-
hensive analyses are presented in Section 4, followed by the
conclusion and future work in Section 5.

II. RELATED WORK

Our work is closely related to the studies on fashion com-
patibility modeling, disentangled representation learning, and
graph convolutional networks. We will elaborate the literature
of these research lines, respectively.

A. Fashion Compatibility Modeling

Recent years have witnessed the growing research interest
in fashion compatibility modeling due to its huge commercial
value. According to the way of the outfit structure, existing
efforts can be broadly summarized into three categories: pair-
wise methods [16], [17], sequence-wise methods [4], [18], and
graph-wise methods [3], [19].

The pair-wise methods mainly focus on the compatibility
between two given items. For example, McAuley et al. [20]
first proposed a general framework to model the human
visual preference for a given pair of items based on
the Amazon real-world co-purchase dataset. Following that,
Song et al. [16] proposed a multimodal pair-wise compati-
bility modeling scheme, whereby the deep neural networks
are used to model the compatibility between fashion items
via the Bayesian Personalized Ranking (BPR) optimiza-
tion [21]. Later, Han et al. [22] presented a prototype-guide
interpretable compatibility modeling, which seamlessly inte-
grates the latent compatible/incompatible prototype learn-
ing and compatibility modeling with the BPR. Moreover,
Yang et al. [23] utilized category complementary relations
to model category-respected compatibility between fashion
items in a translation-based embedding space. Thereafter,
Liu et al. [6] introduced an auxiliary complementary template
generation network equipped with the pixel-wise consistency
and compatible template regularization to improve the com-
patibility modeling performance. The limitation of the pair-
wise methods is that it is cumbersome and time-consuming
to directly apply them to analyze the real-world outfit that
usually comprises more than two items. Moreover, it maybe
inappropriate to capture the complex compatibility relation
among multiple items by separating the outfit into a set of
independent item pairs.

By contrast, the sequence-wise methods regard the outfit
as an ordered list of items and utilize sequential neural
networks to uncover the complex compatibility relation-
ship among them. For instance, Han et al. [4] employed a
Bi-LSTM network to sequentially model the compatibility
relationships among the fashion items in a given outfit.
Later, Dong et al. [18] presented a multi-modal try-on-guided
compatibility modeling framework to jointly characterize the
discrete interaction and try-on appearance of the outfit, where
Bi-LSTM is used for discrete interaction modeling. One key
limitation of the sequence-based methods is that there is
no explicit and fixed order of items in an outfit. Moreover,
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the sequential neighborhood dependency in a given outfit
is less stronger as compared to the tokens in a sentence.
Taking this case as an intuitive example, in the sequence of
< top, bottom, shoes >, the top may be tightly correlated
with the shoes instead of the bottom.

Moving one step forward, the graph-wise methods treat
each outfit as an item graph, whereby each node represents
an item and each edge bridges two items. Based upon the
constructed graph, graph neural networks and their vari-
ants are designed to calculate the outfit compatibility. For
example, Cui et al. [3] proposed the node-wise graph neural
network (NGNN) towards fashion compatibility modeling.
This method constructs a category-oriented fashion graph,
where each node represents a category, and accordingly, each
outfit can be abstracted as a subgraph consisted with the
corresponding category nodes of its composing items. The
outfit compatibility score is calculated based on the learned
item representations with the attention mechanism. In addi-
tion, Cucurull et al. [24] utilized a graph neural network to
learn the items’ embeddings conditioned on their context,
and cast the task of FCM as an edge prediction problem.
Moreover, Li et al. [25] developed a hierarchical fashion graph
network (HFGN) for personalized outfit recommendation,
which models the relationship among users, items, and outfits
simultaneously. Although these methods have achieved great
success and outperformed the pair-wise and list-wise methods,
they overlook the valuable attribute labels associated with
fashion items and therefore neglect the potential of explicitly
representing the items from the attribute perspective. Beyond
these studies, in this work, we jointly explore the visual and
attribute information of fashion items, and model the fashion
compatibility by integrating multi-granularities, i.e., attribute-
and item-levels.

B. Disentangled Representation Learning

Disentangled representation learning [26] targets at learn-
ing multiple factorized representations to capture the latent
explanatory factors reside in the observed data, which has
drawn increasing research attention from various domains,
such as the recommendation domain [27], [28] and computer
vision domain [11]–[13], [29]–[31]. For example, in the rec-
ommendation domain, Hu et al. [32] proposed a graph neural
news recommendation model with unsupervised preference
disentanglement, where a neighborhood routing mechanism
is introduced to dynamically identify the latent preference
factors affecting the user’s click on a piece of news. In addi-
tion, Wang et al. [33] presented a disentangled graph col-
laborative filtering model to mine the fine-grained user-item
relationships.

As the compatibility relationship among fashion items can
be influenced by multiple latent factors, like color, texture,
and style, some researchers also incorporated the disentan-
gled representation to address the task of fashion compat-
ibility modeling. For example, Zheng et al. [9] devised a
disentangled graph learning scheme, where the collocation
compatibility is disentangled into multiple fine-grained com-
patibilities among fashion items. Similarly, Guan et al. [34]

presented a comprehensive multimodal outfit compatibility
modeling scheme, which not only explores the fine-grained
outfit compatibility with disentangled item representations,
but also explicitly models the consistent and complementary
correlations between the visual and textual modalities of items.
Despite of their significant value, the existing efforts mostly
overlook the potential of the semantic labels in supervising the
disentangled representation learning. Therefore, in this work,
we propose to utilize the irregular attributes as the partial
supervision to guide the disentangled representation learning
of items and introduce the completeness regularizer to prevent
the information loss during disentanglement.

C. Graph Convolutional Network

Graph Neural Network (GNN) is devised to learn effective
graph representations by updating the node embedding via
information aggregation from the node’s neighbors. Initially,
Gori et al. [35] utilized the graph neural network to model
the relationship among a set of items. To remedy the long-
term message propagation problem, Li et al. [36] introduced
the Gate Recurrent Units (GRU) in the propagation process.
Although GNNs can be applied to most types of graphs, it is
hard to train for a fixed point. Inspired by this, Kipf et al. [37]
introduced the Graph Convolutional Network (GCN), which
applies the convolutional operations directly on graphs by
updating each node’s representation via the information aggre-
gation from its neighbor nodes. In order to improve the
model generalization ability, Hamilton et al. [38] presented a
general inductive framework to learn a function that generates
embeddings by sampling and aggregating features from a
node’s local neighborhood. Thus far, GCNs have been widely
explored in various tasks, including but not limited to the
tasks of visual comprehension [39], [40], natural language
processing [41], recommendation [42], [43], and image recog-
nition [44]. By virtue of its powerful modeling capabilities
for unstructured data, we elaborate a hierarchical GCN-based
outfit compatibility modeling scheme, where the attribute-level
and item-level compatibility modeling is jointly investigated.

III. METHODOLOGY

In this section, we first formulate the research problem, and
then detail the proposed partially supervised outfit compatibil-
ity modeling scheme (PS-OCM for short).

A. Problem Formulation

In this work, we cast the outfit compatibility modeling task
as a binary classification problem, i.e., whether the given
outfit is compatible. Suppose we have a set of N outfits,
denoted as � = {(Oi , yi )}N

i=1, where Oi is the i -th outfit, and
yi denotes its corresponding compatibility label. Specifically,
yi = 1 if the outfit Oi is compatible, and yi = 0, otherwise.
In addition, we have a set of fashion items I distributed over
T categories. For simplicity, we temporally omit the subscript
i of each outfit. An outfit O comprises K fashion items,
i.e., {I1, I2, . . . , IK }, where Ii ∈ I is the i -th composing
item of the outfit. Considering that the number of items in
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Fig. 2. Illustration of our proposed PS-OCM scheme. It consists of three components: partially supervised attribute-level embedding learning, disentangled
completeness regularization, and hierarchical outfit compatibility modeling.

an outfit is not fixed, K is hence a variable. Each item Ii

is associated with a visual image Vi and a set of attribute
labels Li . We heuristically pre-defined a set of attributes
(e.g., the color and material) A = {am}M

m=1 that can be applied
to characterize all the fashion items, where am is the m-th
attribute, and M is the total number of attributes. Moreover,
each attribute has a set of corresponding attribute values, e.g.,
red and black are two possible values for the attribute color.
We then formally use Vm = �

vn
m

�Nm

n=1 to denote all the possible
values for the attribute am , and Nm is the corresponding total
number of values. Therefore, the set of attribute labels of the
i -th item can be written as Li = {l1

i , l
2
i , . . . , l

M
i }, where lm

i
denotes the i -th item’s m-th attribute label, lm

i ∈ Vm if the item
Ii has m-th attribute, otherwise lm

i = none. Usually there are
two possible reasons leading to lm

i = none: one is the intrinsic
flaws of the dataset due to loose user-generated annotation, and
the other is that items of certain categories essentially cannot
present certain attributes (e.g., the trousers does not have the
attribute of sleeve length).

In this work, we target at learning an outfit compatibility
model F to judge whether a given outfit O is compatible or
not. It is formulated as follows,

s = F
�{(Vi ,Li )}K

i=1|�
�
, (1)

where � refers to the to-be-learned parameters of our model,
and s denotes the compatible probability of the given outfit.
Table I summarizes the main notations used in this work.

B. PS-OCM

As shown in Figure 2, PS-OCM consists of three com-
ponents: 1) partially supervised attribute-level embedding
learning, 2) disentangled completeness regularization, and
3) hierarchical outfit compatibility modeling. We elaborate
them as follows.

TABLE I

SUMMARY OF THE MAIN NOTATIONS

1) Partially Supervised Attribute-Level Embedding Learn-
ing: This component aims to derive the fine-grained attribute-
level representation of the fashion item, which is the basis for
the following hierarchical outfit compatibility modeling. Given
an outfit, we first extract the visual feature of each composing
item via the Convolutional Neural Networks (CNN), which
have obtained remarkable success in many computer vision
tasks [45], [46]. Specifically, we obtain the overall visual
feature embedding of the i -th item in the outfit O as follows,

vi = CNN (Vi ) , (2)

where Vi refers to the i -th item image in its raw RGB pixels,
vi ∈ R

Dv denotes the extracted visual feature of the i -th item,
and Dv is the dimension of the visual feature. In this work,
the function CNN refers to the ResNet18 [47] pretrianed on
ImageNet.

As aforementioned, we have pre-defined a set of M
attributes to characterize all the items. Accordingly, we dis-
entangle the visual feature of each item Ii , i.e., vi , into M
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Fig. 3. Partially supervised attribute-level embedding learning.

attribute-level embeddings. We argue that the attributes are
not linearly separable, and hence accomplish this task by the
non-linear mapping of the MLP. Mathematically, we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e1
i = MLP1 (vi) ,

e2
i = MLP2 (vi ) ,

...

eM
i = MLPM (vi ) ,

(3)

where e j
i ∈ R

De ( j = 1, . . . ,M) denotes the j -th disentangled
attribute-level embedding of the i -th item, and De is the
dimension.

Different from existing studies that focus on the unsu-
pervised disentangled representation learning, we argue that
even the irregular attribute labels of fashion items contain
rich cues. Therefore, they can be used to supervise the
attribute-level embedding learning and hence strengthen the
final compatibility modeling performance. Thereby, we further
utilize M MLPs as the attribute classifiers to explore the
attribute labels. As aforementioned, the attribute labels of
fashion items are irregular. We thus introduce a binary mask
pi for each item Ii in the outfit to select the available attribute
labels of the i -th item. In particular, we define the mask as
pi = [p1

i , p2
i , . . . , pM

i ], where pm
i = φ(lm

i ), and φ(·) is an
indicator function defined as follows,

φ(x) =



0 x is none,

1 else.
(4)

By utilizing the binarized mask, if and only if the item has
the corresponding attribute label, we enforce the supervision
over the embedding for that attribute. In particular, we adopt
the cross-entropy loss to achieve the partial supervision. For-
mally, for a given outfit O consisting of K items, the partial
supervision loss function is formulated as follows,

Lps =
K�

i=1

M�
m=1

− log
�

p
�
lm
i | Cm �

em
i

���
pm

i , (5)

where Cm(·) is the label classifier for the m-th attribute, em
i is

the disentangled embedding of the m-th attribute, and lm
i is

the ground truth attribute label. We illustrate the procedure
of partially supervised disentangled attribute-level embedding
in Figure 3.

2) Disentangled Completeness Regularization: To prevent
information loss during the disentangling process which may
degrade the model performance, we devise a disentangled
completeness regularizer, as illustrated in Figure 2. In par-
ticular, we rely on two strategies to regulate the disentangling
process: orthogonal residual embedding and visual represen-
tation reconstruction.

a) Orthogonal residual embedding: There may be some
implicit visual properties of the item that cannot be represented
by the pre-defined set of attributes. We thus introduce another
special attribute residual to compensate the information loss
during the disentangled representation learning. Specifically,
similar to the M attribute-level embeddings, we adopt another
MLP to derive the residual attribute embedding via,

eM+1
i = MLPM+1 (vi ) , (6)

where eM+1
i ∈ R

De denotes the residual attribute embedding.
Since the residual attribute embedding acts as a compensa-

tion for fully representing the item, we argue that it should
be complementary to other M attribute-level embeddings that
have clear semantics. In other words, the residual embedding
should be orthogonal to each other attribute-level embedding.
It is worth noting that although we disentangle the visual
feature of each fashion item into M attribute-level embeddings,
certain embeddings of the given item maybe meaningless,
since some attributes are not universal and cannot be applied to
certain items. For example, we can discuss the attribute sleeve
length for a T-shirt but not trousers, and the attribute heel for a
pair of shoes rather than a T-shirt. In the light of this, for each
item category, we should define a set of meaningful attributes
to guarantee the effective orthogonal regularization. Towards
this end, we first build the category-attribute associations.
For the t-th category, we take the union set of attributes
used to label items in the t-th category as the whole set of
applicable attributes, denoted as Tt . We then introduce a mask
qt = [q1

t , q2
t , . . . , q M

t ] to select the meaningful attributes for
the t-th item category, where qm

t = 1 if the pre-defined m-th
attribute belongs to the applicable attribute set Tt , otherwise
qm

t = 0. It is worth noting that in the aforementioned partial
supervision module, only the attribute-level embeddings that
have corresponding labels are triggered. Whereas in the this
orthogonal regularization, we further utilize the attribute-level
embedding that even has no corresponding label, as long as it
can be possibly presented by this item.

Ultimately, we have the following orthogonal regularization,

Lor =
K�

i=1

M�
m=1

�
cos


êm

i , eM+1
i

��2

=
K�

i=1

M�
m=1

�
cos


qm

t∗i
em

i , eM+1
i

��2
, (7)

where cos (·, ·) is the cosine similarity function, and t∗i ∈
{1, 2, . . . , T } refers to the category of the i -th item. It is worth
mentioning that once the m-th attribute cannot be applied
to the item Ii , i.e., qm

t∗i
= 0, we will ignore the orthogonal

regularization between that attribute-level embedding and the
residual one.
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b) Visual representation reconstruction: To avoid infor-
mation loss during disentangled representation learning,
we regulate the disentangled embeddings to be able to recon-
struct the original item visual representation. In light of this,
we feed the concatenation of the meaningful disentangled
attribute-level embeddings of the item Ii and the residual
one into the deconvolutional neural network [48]. It is for-
mulated as,

V̂i = D
�

q1
t∗i

e1
i �q2

t∗i
e2

i � . . . , q M
t∗i

eM
i �eM+1

i

��
, (8)

where the binary masks qm
t∗i

’s are used to select the mean-
ingful attribute embeddings of the item Ii , [·�·] refers to
the concatenation operation, D (·) denotes the deconvolutional
neural network, and V̂i stands for the reconstructed visual
representation of the i -th item. We hereafter utilize l_2 loss
to regulate the distance between the reconstructed visual
representation and the origin one via,

Lrec =
K�

i=1

���V̂i − Vi

���2

F
. (9)

Combining the losses of both the orthogonal residual embed-
ding and the visual representation reconstruction constraints,
we reach the final loss for regularizing the disentangled
completeness as follows,

Ldc = Lor + Lrec. (10)

3) Hierarchical Outfit Compatibility Modeling: Inspired by
previous studies [3], [24], we leverage GCNs to model the
outfit compatibility. Beyond existing work, we design a novel
hierarchical graph convolutional network, which is capable of
modeling the complex compatibility relations among items in
an outfit from both attribute and item levels. In particular,
the attribute-level compatibility modeling aims to investigate
the fine-grained compatibility among fashion items, while the
item-level one targets at summarizing the the coarse-grained
outfit compatibility from the item level.

a) Attribute-level compatibility modeling: Regarding the
attribute-level compatibility modeling, given an outfit, we first
construct M + 1 parallel compatibility modeling graphs Gm

a =�
Nm

a , Em
a

�
, (m = 1, 2, . . . ,M + 1), with each devised to

model the outfit compatibility from an attribute aspect.1

In particular, Nm
a and Em

a refer to the set of nodes and
edges of the graph Gm

a , respectively. In the graph Gm
a , each

node refers to a composing item of the outfit that has the
corresponding attribute, i.e., am . Notably, as aforementioned,
not every attribute can be applied to all the items, e.g., the
attribute sleeve length cannot be used to characterize a pair of
trousers. Therefore, for different attributes, different number
of items are applicable for the attribute-level compatibility
modeling. In other words, graphs corresponding to different
attributes may have different numbers of nodes. Towards this
end, for the ease of presentation, we still deploy K item nodes
for all these graphs, i.e., Nm

a = �
n̂m

i

�K
i=1, where n̂m

i is the i -th
node in the graph Gm

a . However, some nodes in these graphs

1As aforementioned, the residual attribute is also incorporated as a special
implicit attribute.

will be defined as the virtual isolated ones and inactive during
the attribute-level compatibility propagation.

During the learning process, each node n̂m
i is associated

with a hidden state vector hm
i , which will be updated to

fulfil the compatibility information propagation over the graph.
We initialize the hidden vector of the node n̂m

i by,

hm
i =



qm

t∗i
em

i , m ∈ {1, 2, . . . ,M} ,
eM+1

i , m = M + 1.
(11)

In this way, if the m-th attribute can be applied to the item
of the i -th node, we will initialize the node with the item’s
corresponding attribute feature. Otherwise the node will be
initialized with an all-zero vector, making it an isolated node
in the graph, and it will not join the subsequent compatibility
information propagation. Regarding the edge construction for
each graph, we introduce an edge between each pair of non-
isolated nodes, i.e., each pair of meaningful items in the
corresponding attribute-level compatibility modeling.

To simplify the notation, considering that the parallel
attribute-level compatibility modeling for different attributes
follow the same learning process, we temporally remove all
the superscripts m from the above notations and present the
general attribute-level compatibility modeling scheme as an
example. Inspired by Graph Attention Networks (GAT) [49],
we employ the attention mechanism to make each node adap-
tively absorb compatibility information from the neighbors.
Formally, we have

αi j = exp
�
Wa

�
hi�h j

��
�

nk∈Ni
exp (Wa [hi�hk])

, (12)

where αi j indicates the importance of the node n j ’s hidden
state to the node ni , Wa is a weight matrix to perform
the linear transformation, [·�·] refers to the concatenation
operation, and Ni denotes the neighborhood of node ni . Once
the attention weights αi j ’s are obtained, they are then used to
propagate information from the neighbors of node ni to the
node itself by,

h�
i = ω

⎧⎨
⎩Wu

⎡
⎣ �

n j ∈Ni

αi j
�
hi � h j

�⎤⎦ + bu

⎫⎬
⎭ , (13)

where � denotes the element-wise multiplication, Wu and bu

are the parameters of the fully-connected layer, and ω refers to
the nonlinear activation function LeakyReLU. In a sense, the
element-wise multiplication hi �h j indicates the compatibility
information between the items Ii and I j . More generally,
instead of propagating the features of node ni ’s neighbors,
we propagate the compatibility information between node ni

and its neighbors, which has proven to be effective in tackling
the outfit compatibility modeling task [34].

Based upon the above inference and computation, the
updated hidden representation of node ni is written as,

h̃i = ω (Wohi + bo)+ h�
i , (14)

where Wo and bo denote the weight matrix and bias
to be learned, respectively. The symbol ω denotes the
LeakyReLU function. We ultimately feed the updated hidden
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node embeddings into a MLP to derive the attribute-specific
compatibility score of the given outfit via,⎧⎨

⎩ci = W2

�
ψ


W1h̃i + b1

��
+ b2,

c = 1
K

�K
i=1 ci ,

(15)

where W1, W2, b1, and b2 are the parameters of the MLPs,
the symbol ψ denotes the ReLu active function, and c is
the compatibility score. Following the above general scheme,
we can obtain all the attribute-level compatibility scores,
denoted as ca = �

c1, c2, . . . , cM , cM+1
�
, as well as the

updated hidden attribute-level embeddings of each node/item,
i.e., h̃i = [h̃1

i , h̃2
i , . . . , h̃M

i , h̃M+1
i ].

b) Item-level compatibility modeling: Similar to attribute-
level compatibility modeling, we also construct a compatibility
modeling graph Go = (No, Eo) at the overview item level,
where No and Eo refer to the node set and the edge set,
respectively. The difference is that we initialize the hidden
vector of the i -th node in the graph Go from two aspects: the
item’s original visual feature vi , and the updated attribute-level
item embedding h̃m

i ’s from the attribute-level compatibility
modeling scheme. In this way, a more comprehensive overview
representation of the item is derived. Specifically, for the i -th
node in the graph Go, we initialize its hidden vector as follows,

gi =
�
vi�Wh

�
h̃1

i �h̃2
i � · · · �h̃M+1

i

���
, (16)

where [·�·] denotes the concatenation operation, and Wh ∈
R

Dv×De(M+1) is the to-be-learned weight matrix, which
projects the attribute-level embeddings to the same space of the
entire visual one. Following the same information propagation
scheme as the attribute-level compatibility modeling, we can
obtain the item-level compatibility score co.

Taking both the attribute- and item-level compatibility mod-
eling results into account, we feed the concatenation of the
attribute- and item-level compatibility scores, i.e., c = [ca�co],
into the MLP to get the final compatibility probability score
as follows,

s = σ {W4 [ψ (W3c + b3)] + b4} , (17)

where W3, W4, b3, and b4 are the parameters of the MLP,
the symbol ψ denotes the ReLU active function, and σ
refers to the Sigmoid active function. We finally adopt the
cross-entropy loss to optimize our proposed PS-OCM, and
reach the following formulation,

Lhc = −ylog(s)− (1 − y)log(1 − s), (18)

where y is the ground truth compatibility label for the outfit
O. Accordingly, the total loss for our PS-OCM can be written
as follows,

L = Lhc + λLps + μLdc, (19)

where λ and μ are trade-off hyper-parameters.
Interpretability. In a sense, the semantic attributes have

explicit meaning and can be used naturally to interpret the
compatibility evaluation result. In particular, we can identify
the prominent attributes that contributing to the final compat-
ibility evaluation most, according to the absolute values of
these attribute-specific compatibility scores, i.e., cm’s.

TABLE II

ATTRIBUTES AND THE POSSIBLE VALUE

IV. EXPERIMENT

In this section, we first introduce the experimental settings,
and then detail the experiments that we conducted on a real-
world dataset by answering the following research questions:

• RQ1: How does the hyperparameters affect our model?
• RQ2: Does PS-OCM outperform existing methods?
• RQ3: How does each component affect PS-OCM?
• RQ4: What is the intuitive evaluation result of PS-OCM?

A. Experimental Settings

1) Datasets: To justify our model, we resorted to the public
dataset IQON3000 [50], due to the fact that each item in
IQON3000 has not only the visual image, but also several
semantic attributes, such as the color and category. In par-
ticular, IQON3000 consists of 308, 747 outfits, composed by
672, 335 items. In total, there are 11 attributes provided by this
dataset. Table II shows the possible value examples and the
corresponding number for each attribute. To ensure the quality
of the dataset, we empirically sampled 20, 000 compatible
outfits, each of which consists of at least 2 but no more
than 10 items. Since the dataset only provides the compatible
outfits, it is needed to compose the incompatible ones for
training. Specifically, for each compatible outfit, we replaced
each of its composing items with a randomly sampled item
from the same category to construct the incompatible outfit.
In this manner, we end up with a set of 40, 000 compatible/
incompatible outfits. We then divided it into the training set,
validation set, and test set according to the ratio of 8 : 1 : 1.

2) Evaluation Tasks and Metrics: Similar to previous stud-
ies [3], [4], [17], [24], [34], we justified our proposed PS-OCM
scheme with two specific tasks: outfit compatibility estimation
and fill-in-the-blank (FITB). The former task is to evaluate the
compatibility score of a given outfit, where we adopted the
AUC (Area Under the ROC curve) [51] as the corresponding
evaluation metric. The latter task is to choose one item from
a set of candidates (i.e., one positive item and three negative
items), for a given incomplete outfit (with an item missing).
For this task, we composed each candidate item with the given
items as a complete outfit, and used the well-trained model to
compute its compatibility score. We then chose the item with
the highest score as the answer. For this task, we applied the
accuracy as the evaluation metric.
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TABLE III

PERFORMANCE COMPARISON BETWEEN OUR PROPOSED PS-OCM AND
OTHER BASELINE METHODS ON TWO TASKS OVER THE IQON3000
DATASET. NOTABLY, THE BASELINE METHODS WERE RE-TRAINED

BY THE RELEASED CODES. THE BEST RESULTS ARE IN BOLD,
WHILE THE SECOND BEST RESULTS ARE UNDERLINED

3) Implementation Details: For the image encoder,
we employed the ResNet18 [47] pre-trained on ImageNet [52]
as the backbone, and modified the last layer to make the output
feature dimension as 256. Pertaining to the MLPs that obtain
the disentangled attribute-level embeddings, we set the output
dimension to 64. For each label classifier, we implemented
it by the two-layer MLP with the LeakyReLU activation,
whose output dimension is set to the number of corresponding
attribute values. As for the deconvolutional neural network,
we stacked five transposed convolution layers, and the first
four layers are followed by a Batch Normalization [53] and
ReLU activation, while the last layer is followed by a Tanh
activation to scale the output values. We selected Adam [54]
as the training optimizer, with a fixed learning rate of 0.0001.
We empirically set the batch size as 32, and both trade-off
hyper-parameters, i.e., λ and μ in Eqn.(19), as 1. All the exper-
iments are implemented by PyTorch over a server equipped
with 4 GeForce RTX 2080 Ti GPUs, and the random seeds
for model initialization are fixed for the reproducibility.

B. On Hyper-Parameters (RQ1)

In addition, we studied the influence of the key hyper-
parameters, including the trade-off parameters λ and μ in
Eqn.(19), the output feature dimension of the image encoder,
and the depth of the GCNs in our hierarchical outfit compat-
ibility modeling component.

The trade-off parameters λ and μ are searched among
values of [0.01, 0.05, 0.1, 0.5, 1]. Figure 4(a) and Figure 4(b)
show the performance of our model on the testing set with
different hyperparameter values. As can be seen, our method
performs best when λ = 1 and μ = 1. This suggests that
both the partially supervised attribute embedding learning
component and disentangled completeness regularization com-
ponent contribute to the model. As for the feature dimension,
it is searched among values of [64, 128, 256, 512, 1024, 2048].
As can be seen from Figure 4(c), our model is not sensitive to
this parameter in the FITB task when the dimension does not
exceed 1024. For the sake of efficiency, the feature dimension
is set to 256. Moreover, Figure 4(d) shows the performance
of our model with the number of GCN layers ranging from

Fig. 4. Influence of trade-off parameters (a) λ and (b) μ, (c) feature
dimension, and (d) number of GCN layers on two tasks.

1 to 5. As can be seen, our model performs generally stable
when the number of GCN layers is no more than 3. However,
when the number of GCN layers keeps increasing, our model’s
performance significantly drops. This observation is similar to
that reported in [57], and can be attributed to that the more
layers may lead to the overfitting problem and hence hurt the
model’s performance. Overall, our model achieves the best
performance with only one GCN layer.

C. On Model Comparison (RQ2)

To validate the effectiveness of our proposed scheme,
we chose the following baselines for comparison, including
the pair-wise, sequence-wise, and graph-wise models.

• Type-aware [17] devises the type-specific embedding
spaces according to the item types, to facilitate the outfit
compatibility measurement. The visual-semantic loss is
utilized to incorporate the visual and textual information.

• SCE-NET [55] embeds the item visual features into
multiple semantic subspaces by multiple condition masks,
and uses the multimodal features to derive the importance
weights for different subspace features to obtain the final
item representations.

• Bi-LSTM [4] takes items in an outfit as a sequence,
and exploits the latent item interaction by a bi-directional
LSTM. Notably, the textual information is also adopted to
regularize the outfit compatibility modeling by the visual-
semantic consistency loss.

• NGNN [3] represents each outfit as a graph, and utilizes
an attention mechanism to calculate the outfit compati-
bility score. For multimodal features, NGNN designs two
graph channels, and derives the final compatibility score
with the late fusion.

• HFGN [19] develops a hierarchical fashion graph net-
work to jointly fulfill the fashion compatibility mod-
eling and personalized outfit recommendation, where a
category-oriented fashion graph is built for each outfit.
It only uses the visual features.
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• MM-OCM [34] explicitly models the consistent and
complimentary relations between the visual and textual
modalities of fashion items by the parallel and orthogo-
nal regularizations. Moreover, MM-OCM jointly unifies
the text-oriented and vision-oriented outfit compatibility
modeling with the mutual learning strategy.

• OCM-CF [10] directly learns the context-aware global
outfit representation by GCNs and the multi-head atten-
tion mechanism, and employs multiple network branches
to explore the hidden complementary factors that affect
the outfit compatibility.

• MOCM-MGL [56] proposes a multi-modal outfit com-
patibility modeling with modality-oriented graph learn-
ing. It takes both visual, textual, and category modalities
as input and jointly propagates the intra-modal and inter-
modal compatibilities among fashion items in the outfit.2

• PS-OCM-Resnet50/PS-OCM-SwinTransformer.
To study the effect of utilizing different backbones to
extract the image features, we replaced the Resnet18
backbone to Resnet50 and SwinTransformer [58],
respectively.

Table III shows the performance of different methods on the
outfit compatibility estimation task and fill-in-the-blank task.
Notably, the baseline methods are re-trained by the released
corresponding codes over the IQON3000 dataset. From this
table, we had the following observations.

1) The pair-wise methods, i.e., Type-aware and SCE-NET,
achieve the worst performance on both two tasks. This
maybe due to the fact that the pair-wise methods mainly
justify the local compatibility between two items, lack-
ing the global view of the whole outfit.

2) The sequence-wise method, i.e., Bi-LSTM, performs
better than the pair-wise methods, but worse than
the graph-wise methods, i.e., HFGN and MM-OCM.
On the one hand, this confirms the advantage of treating
the outfit as a unified sequence rather than the item pairs.
On the other hand, this implies that treating the outfit as
an ordered sequence of fashion items is still suboptimal.
This may be attributed to that the sequence-wise method
can suffer from the cumulative error propagation prob-
lem, since it computes the outfit compatibility score by
keeping predicting the next item with the previous ones.

3) Our methods consistently surpass all the baseline meth-
ods on both tasks. This confirms the advantage of our
scheme that utilizes the irregular attribute labels to
provide the partial supervision to strengthen the item
representation learning and employs the hierarchical
graph convolutional network to integrate the attribute-
level and item-level outfit compatibility learning.

4) PS-OCM-SwinTransformer performs better than both
PS-OCM and PS-OCM-ResNet50, indicating the supe-
riority of swin transformer in image feature extraction
and hence boost the final performance.

To gain deep insights about our proposed PS-OCM, we further
checked the performance of our PS-OCM for outfits with

2For fair comparison, the attribute information is utilized as the pure text
in MOCM-MGL.

Fig. 5. Performance of PS-OCM for outfits with different numbers of items.

different numbers of composing items on the two tasks.
In particular, we reported the performance of our model for
outfits with number of composing items ranging from 2 to 10.
As can be seen from Figure 5, our PS-OCM is generally not
sensitive to the composing numbers, which indicates that our
model PS-OCM has the capacity of handling the compatibility
modeling for outfits with various numbers of items.

D. On Ablation Study (RQ3)

To justify each component in our model, we conducted
ablation experiments on the following derivatives.

• w/o Partial_Supervision: To explore the effect of the
partially supervised attribute embedding learning compo-
nent, we removed the partial supervision loss by setting
λ = 0 in Eqn.(19).

• w/o Orthogonal: To study the effect of the orthogonal
regularization during the visual attributes disentangle-
ment, we removed the orthogonal regularization Lor in
Eqn.(10).

• w/o Reconstruction: To validate the necessity of visual
representation reconstruction learning, we removed the
visual representation reconstruction constraint Lrec in
Eqn.(10).

• w/o Hierarchical_Graph: To validate the function of
hierarchical graph compatibility modeling component,
we removed this part by directly concatenating the
attribute-level embeddings of each outfit to obtain the
overall outfit representation and passing it to a MLP to
get the outfit’s compatibility score.

• Attribute-level_Only: To verify the importance of
coarse-grained item-level information, this derivative only
utilizes the fine-grained attribute-level compatibility mod-
eling part in the hierarchical graph compatibility model-
ing component.

• Item-level_Only: Similarly, to justify the necessity of
introducing the fine-grained attribute-level compatibility
modeling, we removed it from the hierarchical outfit
compatibility modeling network.

Based on ablation experimental illustrated in Table IV,
we found that our model consistently outperforms all the
above derivatives on both tasks, which demonstrates the
effectiveness of each component in our proposed PS-OCM.
Specifically, we have the following detailed observations.

Authorized licensed use limited to: SHANDONG UNIVERSITY. Downloaded on September 17,2023 at 14:37:02 UTC from IEEE Xplore.  Restrictions apply. 



4742 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE IV

ABLATION STUDY OF OUR PROPOSED PS-OCM ON IQON3000
DATASET. THE BEST RESULTS ARE IN BOLD

Fig. 6. Comparison of the effect of removing each single attribute from our
PS-OCM on two tasks.

1) The performance of w/o Partial_Supervision significantly
drops, as compared to PS-OCM, indicating that partially
supervised attribute embedding learning component is indeed
helpful to strengthen the visual representation learning per-
formance. 2) Both w/o Orthogonal and w/o Reconstruction
are inferior to PS-OCM, which suggests that it is essential
to consider the orthogonal regularization and visual feature
reconstruction to prevent the visual information loss during
the visual feature disentanglement and guarantee the complete-
ness for the disentanglement. And 3) w/o Hierarchical_Graph
delivers the worst performance, reflecting the overall effective-
ness of our proposed hierarchical outfit compatibility mod-
eling component. Moreover, both Attribute-level_Only and
Item-level_Only performs better then w/o Hierarchical_Graph,
which confirms the necessity of jointly incorporating the
attribute-level and item-level compatibility modeling modules.
In a sense, this also reflects that the fine-grained attribute-
level features and the overview item-level features complement
each other to certain level toward the outfit compatibility
modeling.

As the partially supervised attribute-level embedding learn-
ing contributes the key novelty of our work, we further studied
the effect of removing each attribute embedding from the
training phase of our PS-OCM. As aforementioned, we had
12 attributes, including 11 concrete attributes in the origi-
nal dataset and one “residual” attribute we newly defined.

Fig. 7. Case study of PS-OCM on the outfit compatibility estimation task.

Accordingly, we omitted each of the 12 attributes from our
model, and hence obtained 12 derivatives of our model,
with each named as O_{each_attribute}. Figure 6 shows
the performance of our PS-OCM and its derivatives on the
two tasks. As can be seen, removing any concrete attribute
(e.g., the design or color) hurts our model’s performance,
which verifies that each concrete attribute contributes to the
outfit compatibility modeling. In particular, we noticed that
the color attribute greatly affects our model’s performance
on both tasks, which is reasonable, as the color attribute
is the most straightforward influential factor on the outfit
compatibility modeling. Meanwhile, we found that O_residual
underperforms our PS_OCM. This reflects the importance of
the residual attribute, and indicates its capability of compen-
sating the information loss during the attribute representation
disentanglement.

E. On Case Study (RQ4)

To get the intuitive understanding of our model, we also
conducted the case study of our method in the two tasks: outfit
compatibility estimation and fill-in-the-blank.

Figure 7 shows several testing examples of our model on
the outfit compatibility estimation task, where the importance
distribution of attributes, i.e., the normalization of the absolute
values of the attribute-level compatibility scores, is also given
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Fig. 8. Case study of PS-OCM and its several derivatives as well as the best baseline MOCM-MGL on the FITB task.

to intuitively demonstrate the interpretability of our model.
As can be seen from the first example, our model yields
the correct compatibility estimation, and captures the color
attribute as the most important influential factor. This is
reasonable as the color presented by the outfit is harmonious.
In second example, our model also gives a high compatible
probability score, and identifies that the pattern attribute is
the most important factor. As we can see, the earrings and
the dress in the given outfit do consistently present the dotted
pattern. Accordingly, the result makes sense. As for the last
incompatible example, our PS-OCM gives a low compatibility
score, and the pattern attribute is also captured as the most
important factor contributing to the incompatible estimation
result. From this example we found that the striped pattern of
the T-shirt, spotted pattern of the skirt, and floral pattern of
the sandal indeed form no compatible look.

Figure 8 shows several testing results of our PS-OCM,
compared with its several derivatives and MOCM-MGL which
gains the best performance among baselines. In particular, the
first column refers to the questions of the fill-in-the-blank task,
and the second column lists the corresponding four options,
where the ground truth item is denoted with a green box. The
last column shows the choice yielded by each method and
indicates whether the choice is true or not by a green tick and
red cross. As can be seen from the first example in Figure 8,
only w/o Partial_Supervision and MOCM-MGL fail to give the
correct choice, i.e, the second item that has the same geometric
pattern with the given earrings. This suggests the effectiveness
of incorporating irregular attribute information as the partial
supervision. In the second example, all the derivatives chose
the false item, which further demonstrates the importance of
each designed component in PS-OCM. Regarding the last
example, although all our methods fail to give the correct
answer, we noticed that their chosen items also go well with

the given question items, especially from the color perspective.
This also implies the effectiveness of our model.

V. CONCLUSION AND FUTURE WORK

In this work, towards outfit compatibility modeling,
we present a novel partially supervised compatibility mod-
eling, named PS-OCM, which consists of three key compo-
nents: 1) partially supervised attribute embedding learning;
2) disentangled completeness regularization; and 3) hierar-
chical outfit compatibility modeling. In particular, we first
present a partially supervised disentangled learning method
to disentangle the visual representation of each item into
several attribute-level embeddings. In addition, we devise
the disentangled completeness regularization to prevent the
information loss during disentanglement. Finally, we design a
hierarchical graph convolutional network that jointly performs
the attribute- and item-level compatibility modeling. Extensive
experiments have been conducted on a real-world dataset with
two popular tasks: the outfit compatibility prediction and fill-
in-the-blank. The encouraging experiment results validate the
superiority of our proposed model and the importance of its
each component. In addition, we found that our PS-OCM
is not sensitive to the number of items in the outfit, and
removing each attribute, including the introduced residual one,
from the embedding disentanglement will hurt the model’s
performance. This shows that each attribute could affect the
outfit compatibility modeling to some extent.

The limitation of our work is that currently we only evaluate
the outfit compatibility from the general standard. In fact,
there may be some subjective factors influencing the outfit
compatibility evaluation, namely, for the same garment, differ-
ent users may have different evaluations. Therefore, in future,
we intend to study the personalized fashion compatibility
modeling, where the user’s preference would be explored.
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