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With the boom of the fashion market and people’s daily needs for beauty, clothing matching has gained
increased research attention. In a sense, tackling this problem lies in modeling the human notions of the
compatibility between fashion items, i.e., Fashion Compatibility Modeling (FCM), which plays an important
role in a wide bunch of commercial applications, including clothing recommendation and dressing assistant.
Recent advances in multimedia processing have shown remarkable effectiveness in accurate compatibility
evaluation. However, these studies work like a black box and cannot provide appropriate explanations, which
are indeed of importance for gaining users’ trust and improving their experience. In fact, fashion experts usu-
ally explain the compatibility evaluation through the matching patterns between fashion attributes (e.g., a silk

tank top cannot go with a knit dress). Inspired by this, we devise an attribute-wise explainable FCM solution,
named ExFCM, which can simultaneously generate the item-level compatibility evaluation for input fashion
items and the attribute-level explanations for the evaluation result. In particular, ExFCM consists of two key
components: attribute-wise representation learning and attribute interaction modeling. The former works on
learning the region-aware attribute representation for each item with the threshold global average pooling.
Besides, the latter is responsible for compiling the attribute-level matching signals into the overall compatibil-
ity evaluation adaptively with the attentive interaction mechanism. Note that ExFCM is trained without any
attribute-level compatibility annotations, which facilitates its practical applications. Extensive experiments
on two real-world datasets validate that ExFCM can generate more accurate compatibility evaluations than
the existing methods, together with reasonable explanations.
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Fig. 1. Illustration of attribute-wise explainable FCM.
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1 INTRODUCTION

At present, fashion has been a flourishing industry with global production value up to three tril-
lion dollars,1 which demonstrates people’s great demand for clothing [31]. In fact, clothing plays
an essential role in people’s daily lives, since a harmonious (compatible) outfit can improve the
personal appearance instantly. Nevertheless, matching complementary clothes (e.g., the top, bot-
tom, and shoes) and making proper outfits have been daily troubles for many people, especially
those who have a poor sense of aesthetics. In response to this, Fashion Compatibility Modeling
(FCM) that assesses the compatibility score for a given set of complementary fashion items, e.g., a
blouse and a skirt, has drawn increased research attention [22, 32, 33].

Traditionally, professional fashion compatibility evaluation is manually conducted by fashion
experts, magazine editors, and bloggers [12], which is infeasible for ordinary people. By contrast,
owing to the extraordinary representation ability, the Deep Neural Networks (DNNs) have become
the most promising automatic solutions for FCM, where the compatibility assessment can be mea-
sured by the distance between latent representations of two fashion items. Despite the powerful
compatibility evaluation, the black-box DNNs cannot explain reasons of the evaluation (e.g., why
two fashion items are compatible/incompatible) and hence suffer from the poor interpretability.
In a sense, the explanations for FCM are crucial in practice due to the following three reasons:
(1) Reliability: explanations make the evaluation results more convincing and enhance the relia-
bility of models [37]. (2) Practicability: explanations help users learn to match fashion items and
find compatible ones with fewer attempts [49]. And (3) Expandability: explanations benefit the
understanding of the user’s clothing matching preference and hence can be directly applied to the
personalized fashion recommendation task [13, 34, 35].

To address the limitation of existing studies, we focus on devising the explainable FCM scheme,
where the attribute-level interactions (e.g., a silk tank top cannot go with a knit dress) are adopted
as the evaluation explanations. The underlying philosophy is that attributes (e.g., category, pat-
tern, and color) characterize the most intuitive visual cues of fashion items in the semantic level,
and their interactions are widely used to interpret the evaluation results by fashion experts [23].

1www.fashionunited.com/.
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Fig. 2. Illustration of the different influences of the attributes. For the same top, the pattern attribute (floral)
plays a prominent role in the compatibility evaluation with the given floral bottom in the example 1. By
contrast, the color attribute (white) dominates that with the black bottom in the example 2 as “white +
black” is one common matching rule.

Without loss of generality, in this work, we particularly study the attribute-wise explainable FCM
between items of the two most common fashion categories: the top and bottom, where both the
compatibility evaluation score and explanations are generated, as shown in Figure 1.

However, exploring the explainable FCM scheme by virtue of comprehensive fashion attributes
is non-trivial due to the following challenges: (1) Fashion attributes are usually unavailable in the
practical usage of FCM models, as it is demanding to ask users to key in the detailed attributes
of the input fashion items. Hence, how to acquire the discriminative attribute representations of
fashion items for FCM constitutes a primary challenge for us. (2) Existing datasets pertaining to
FCM lack of ground truth for the attribute-level compatibility. It poses another challenge on how
to learn the attribute-level matching signals from the general item-level compatibility annotations
and hence generate reasonable explanations. And (3) different attributes (e.g., category, color, and
fabric) may contribute differently to the fashion compatibility in diverse item pairs. As can be
seen from Figure 2, for the same top, the pattern attribute (floral) plays a prominent role in the
compatibility evaluation with the given floral bottom in the example 1. By contrast, the color
attribute (white) dominates in that with the black bottom in the example 2 as “white + black” is a
common clothing matching rule. Accordingly, how to adaptively weigh the attribute influence is
a crucial challenge.

To address the aforementioned challenges, we present an attribute-wise explainable FCM
method, termed ExFCM. As shown in Figure 3, ExFCM consists of two key modules: (1) Attribute-

wise Representation Learning. Towards the first challenge, considering fashion attributes usually
associate certain regions (e.g., sleeves appear on both sides of the garment), we first resort to the
Attribute Activation Map (AAM) [49] to align each fashion attribute with its most related region.
Then, we propose a new pooling operator, named Threshold Global Average Pooling (TGAP), to
learn the region-aware attribute representation. (2) Attribute Interaction Modeling. For the purpose
of tackling the second challenge, we adopt the interaction mechanism [5] to capture the attribute-
level matching signals and further facilitate the explainable FCM. Moreover, to cope with the third
challenge, we employ the attention mechanism to explore the dynamic influence of each attribute
with different input fashion items.

As for the optimization of ExFCM, to enhance the feasibility and portability of ExFCM, we
introduce an auxiliary dataset with rich attribute annotations to facilitate the attribute-wise rep-
resentation learning. Note that the annotations are only the attribute values of each fashion item
rather than the attribute-level compatibility between items. Besides, we implement the attribute
interaction modeling under the Bayesian Personalized Ranking (BPR) framework [29], which is
used to explore the relative compatibility between complementary fashion items (i.e., tops and
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Fig. 3. Illustration of the proposed ExFCM, which consists of two key modules. The attribute-wise repre-
sentation learning part aims to learn the region-aware attribute representation. The attribute interaction
modeling part works on inferring the compatibility of attribute interactions between the top ti and the bot-
tom bj , and then generates the overall compatibility evaluation qi j .

bottoms) on our primary dataset for clothing matching. Finally, we present explanations from two
aspects: (1) Attribute Interactions. We find the most compatible/incompatible attribute pairs (with
the highest/lowest compatibility scores) for a given item pair. (2) Individual Attributes. We com-
prehensively evaluate an attribute of the fashion item based on its overall compatibility with all
attributes of the complementary item.

Our main contributions can be summarized in threefold:

• We propose an interpretable scheme for FCM, which can generate comprehensive attribute-
level explanations for item-level compatibility evaluations.

• The proposed model is capable of inferring attribute-level matching signals between fashion
items without any attribute-level compatibility annotations.

• Extensive experiments on two real-world datasets validate that ExFCM can generate more
accurate compatibility evaluations than several state-of-the-art methods, together with rea-
sonable explanations. Codes are released.2

The rest of the article is organized as follows: Section 2 briefly reviews the related work. In
Section 3, we expatiate the proposed ExFCM. The experimental results and detailed analyses are
given in Section 4, followed by the conclusion and future work in Section 5.

2 RELATED WORK

2.1 Fashion Compatibility Modeling

Recently, there has been a growing research interest in FCM due to the huge commercial value.
Existing efforts have primarily utilized the multi-modal content to learn the compatibility and
performed matching in a latent space [27, 33], where compatible items are assumed to be located
closer. For example, Li et al. [18] proposed an automatic composition system to score the fashion

2https://joeyangbuer.wixsite.com/exfcm.
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outfit based on the appearances and meta-data via the multi-modal and multi-instance deep learn-
ing. In addition, Vasileva et al. [38] presented an approach to learn the type-aware embedding for
fashion items, and jointly learns the item similarity and compatibility in an end-to-end manner.
Moreover, Han et al. [8] presented a bidirectional LSTM [39] to sequentially model compatibility
relationships among the fashion items of an outfit.

Noticing the rich knowledge referring to clothing matching in the fashion domain, Song
et al. [32] compiled the domain knowledge (clothing matching rules) into a pure data-driven FCM
model to boost the performance within a teacher-student network [14]. Later, Yang et al. [45]
utilized the category-specific complementary relations to model the category-aware compatibility
between items via a translation-based embedding space. Although these approaches have achieved
compelling success, these models can only answer the question of “whether the given fashion
items are compatible or not” but cannot provide explanations. Beyond that, we aim to explore
an explainable FCM scheme, which can not only give accurate compatibility evaluations but also
improve the interpretability of evaluation results in a comprehensive attribute-wise manner.

2.2 Explainable Fashion Analysis

In fact, plentiful studies have explored the potential of the attribute [24, 46] as the mid-level rep-
resentation to bridge the long-standing semantic gap [25, 47] between the low-level visual clues
and high-level intents (e.g., FCM) and enhance the explainability of fashion analysis results. In
particular, Chen et al. [3] proposed a fully automated system that describes the clothing appear-
ance with semantic attributes for fashion applications. Liao et al. [19] proposed an EI (Exclusive &
Independent) tree to incorporate the structural knowledge of the fashion domain for facilitating
the interpretable fashion item retrieval.

Moreover, several pioneer efforts have been made on the explainable FCM. For example, Tang
et al. [36] proposed a method for quantifying how each attribute feature of each item is to the
outfit compatibility score. Nevertheless, this work focused on limited attributes (only the shape,
texture, and color) and overlooked the attribute interaction in the FCM, making the interpretation
incomprehensive. Towards this end, Feng et al. [6] proposed a partition embedding network to
learn the embedding of each attribute and then modeled the attribute-level compatibility between
input fashion items. However, one key limitation of this work is that it is very dependent on the
attribute-level compatibility ground truth, which is usually unavailable in practice. Besides, Wang
et al. [42] aimed to learn category-specified pairwise similarities between items and diagnose the
incompatible category factors with the backpropagation gradients. Different from these studies,
our work is to fulfill explainable FCM task by comprehensively exploring the interactions of vari-
ous different attributes without any attribute-level compatibility annotations.

3 METHODOLOGY

In this section, we first formally define the explainable FCM problem and then detail the proposed
ExFCM.

3.1 Problem Formulation

Suppose we have a set of tops T = {ti }Nt

i=1 and a set of bottoms B = {bj }Nb

j=1, where Nt and Nb

denote the total number of tops and bottoms, respectively. In addition, we have a set of positive
top-bottom pairs S = {(tip

,bjp
)}Pp=1 composed by fashion experts, where P is the total number of

positive pairs. In this work, we target at addressing the problem of explainable FCM by captur-
ing the attribute-level matching signals between tops and bottoms. In particular, we predefine a
set of attributes U = {um }Mt

m=1 for tops and R = {rn }Mb

n=1 for bottoms, where Mt and Mb are the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 1, Article 36. Publication date: April 2021.



36:6 X. Yang et al.

Table 1. Summary of the Main Notations

Notation Explanation

ti The ith top.
bj The jth bottom.
um Themth attribute for tops.
Mt Number of the top attributes.
rn The nth attribute for bottoms.
Mb Number of the bottom attributes.
Θq To-be-learned parameters.
smn

ij Attribute Compatibility between um of top ti and rn of bottom bj .
qi j Item Compatibility between the top ti and the bottom bj .

total number of corresponding attributes, respectively. Moreover, we denote Um = {uc
m }

Um

c=1 and

Rn = {r c
n }

Rn

c=1 as the set of possible values for the attribute um and rn (e.g., “red” and “black” for
the attribute “color”), respectively. Then based on (T ,B,S), we focus on devising an explainable
FCM network Q that is able to simultaneously generate both the overall compatibility qi j and the
attribute-wise compatibilities smn

ij ’s for a given top-bottom pair (ti , bj ) as follows:

Q (ti ,bj |Θq ) → (qi j , {smn
ij |∀m,n}), (1)

where smn
ij refers to the compatibility between the attribute um of top ti and attribute rn of bot-

tom bj . Θq denotes the to-be-learned parameters in the network Q. Table 1 summarizes the main
notations used in this article.

3.2 ExFCM

As a major novelty, our proposed ExFCM is capable of modeling the attribute interactions between
fashion items and hence improving the explainability of compatibility evaluation results. In partic-
ular, we first set up the attribute-wise representation learning network to capture the region-aware
attribute representations of fashion items, and then we introduce the attribute interaction modeling

to fulfill the explainable compatibility modeling.

Attribute-wise Representation Learning. Here, we take the attribute-wise representation
learning for tops as an example, and that for bottoms can be derived in the same manner. To
simplify the presentation, we temporally omit the subscript i of ti .

Due to the concern that the fashion attributes (e.g., neckline and sleeve length) usually present
the high correlations with certain regions, we particularly investigate the region-aware attribute
representations of fashion items. To this end, we resort to the AAM [1], which has shown great
success in locating the discriminative area of a specific attribute in an image. Specifically, we re-
place all the fully connected layers of AlexNet with a global average pooling (GAP) [7, 49] layer,
which has proven to be effective in capturing the spatial correspondence between feature maps
and the attribute [20]. To compensate the removal of fully connected layers, inspired by [1, 49], we
introduce two additional convolutional layers (i.e., “conv6” and “conv7”) with similar structure to
“conv5”, as shown in Figure 3. Similar to [1], we feed the output of the GAP layer into Mt parallel
attribute classification branches, each of which corresponds to an attribute and is optimized by the
cross-entropy loss. Formally, we define the above GAP-modified network as P.
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To obtain the AAM of a given top t on attribute um , we first derive its attribute value on um as
follows:

c∗ = arg max
c

(P (uc
m |t )), (2)

where c∗ is the index of the predicted attribute value. Then define the AAM for the given top t
regarding the attribute um as Mc∗

m , whose spatial elements can be calculated by,

Mc∗
m (x ,y) =

∑
k

wc∗

k fk (x ,y), (3)

where fk (x ,y) represents the activation of the kth feature map generated by the last convolutional
layer (“conv7”) at the spatial point (x ,y). wc∗

k
stands for the weight of the kth feature map corre-

sponding to the attribute valueuc∗
m , which can be derived from the attribute classification network.

Intuitively, each entry Mc∗
m (x ,y) indicates the contribution of the activations at the spatial point

(x ,y) towards the classification of the attribute um .
Having obtained the attribute regions, we can derive the region-aware attribute representations.

Propelled by the fact that certain fashion attributes may involve several unconnected regions (e.g.,
sleeves appear on both sides of the garment), we devise a novel TGAP method to adaptively pool
the spatial features with a threshold θ rather than the inflexible bounding box used in existing
work [1]. Formally, we define TGAP with respect to the attribute um as follows:

ok
m =

∑
(x,y ) дk (x ,y) 1(Mc∗

m (x ,y) > θ )∑
(x,y ) 1(Mc∗

m (x ,y) > θ )
, (4)

where дk (x ,y) represents the activation of the kth feature map generated by the “conv5” layer at
the spatial point (x ,y), and ok

m is the output of the kth feature map by TGAP. Note that the “conv7”
layer has been used to calculate the AAM, and we thus adopt the shallower convolutional layer
(i.e., “conv5”) for avoiding the overfitting. 1(z) denotes an indicator function that returns 1 when
the argument z is true and 0 otherwise.

Ultimately, to obtain the attribute representations, similar to [1], we feed the output of TGAP
om = [o1

m , . . . ,o
K
m] into Mt multilayer perceptrons (MLPs) {F1,F2, . . . ,FMt

}, respectively. Specifi-
cally, we have,

at
m = Fm (om ),m ∈ {1, 2, . . . ,Mt }, (5)

where at
m refers to the attribute representation for the top t on attribute um . Similarly, we can

derive the attribute representation ab
n for the bottom b on attribute rn .

Optimization. In fact, most existing real-world datasets for FCM lack fine-grained attribute la-
bels for each fashion item and hence cannot well support our attribute-wise representation learn-

ing. Towards this end, we introduce an auxiliary set of tops T̂ = {t̂i }N̂t

i=1 and bottoms B̂ = {b̂j }N̂b

j=1

with fine-grained attribute annotations. Similarly, here, we temporally omit the subscript i of t̂i
for simplicity.

Undoubtedly, it is reasonable to assume that fashion items with similar visual signals usually
share similar attribute representations. To explore this underlying semantic correlation among
fashion items, we adopt the triplet loss [15] as follows:

LT =
∑

(t̂,t+,t− )∈E

∑
um ∈U

max {0,α − d (at̂
m , a

t+

m ) + d (at̂
m , a

t−
m )}, (6)

where α is a margin, and d (·, ·) represents the cosine similarity between the attribute representa-
tions. E denotes the training triplet set, which is defined as follows:

{(t̂ , t+, t−) |∀um ∈ U , ûm = u
+
m ∧ ûm � u−m ∧ {t̂ , t+, t−} ⊆ T̂ }, (7)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 1, Article 36. Publication date: April 2021.
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Fig. 4. Workflow of the proposed attribute interaction modeling.

where ûm ,u
+
m , andu−m denote the attribute values of tops t̂ , t+, and t− on attributeum , respectively.

Intuitively, the top t̂ shares the same attribute values with the positive sample t+ while completely
differing from those of the negative sample t−.

Apart from preserving the semantic correlation among fashion items, we also expect that the
attribution representation can well retain the discriminative cues towards the corresponding at-
tribute classification. In light of this, we adopt the following objective function:

LRC =
∑
t̂ ∈T̂

∑
um ∈U

−loд(p (uĉ
m |at̂

m )), (8)

whereuĉ
m is the ground truth value of top t̂ on attributeum . Ultimately, we reach the final objective

function for our attribute-wise representation learning network as follows:

LA = LT + LRC . (9)

Attribute Interaction Modeling. Having obtained the attribute representations for fashion
items, we can proceed to the core of ExFCM: attribute interaction modeling, which aims to capture
the attribute-level matching signals and enhance the interpretability of the compatibility evalua-
tion. Towards this end, we lean upon the interaction mechanism [5, 44] that has been widely used
in various tasks, such as the natural language inference [28, 41] and retrieve-based chatbot [43].
The key idea of interaction mechanism is to assign interaction scores between small units to infer
fine-grained clues about whether two contents are matching.

Intuitively, it is reasonable to argue that compatible fashion items should share certain attribute
interaction patterns. For example, tank tops go better with shorts instead of the dress, while red tops
better avoid the green bottoms. Therefore, to better characterize the attribute interaction, we first
seek the latent compatibility space where compatible fashion item pairs are located closer than
those are incompatible. Due to the remarkable representation ability of DNNs [4, 11, 26], we em-
ploy MLP to explore the latent compatibility space. In particular, given the attribute representation
at

m of the top t , we can derive its latent attribute representation ãt
m ∈ RDk as follows:

ãt
m = H t

a (at
m ), (10)

where H t
a is an MLP with l hidden layers. Dk is the dimensionality of the latent attribute-wise

compatibility space. In the same way, we can derive the latent attribute representation ãb
n for the

bottom b with a MLPH b
a .

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 1, Article 36. Publication date: April 2021.
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ALGORITHM 1: Attribute Interaction Modeling.

Require: Ds = (i, j,k ), μ,γ , l

Ensure: Parameters in the neural networks H t
a ,Hb

a ,H t
д ,Hb

д , and parameters w,Ua ,Uд in the attention
network A.

1: Initialize parameters in the networksH t
a ,Hb

a ,H t
д ,Hb

д ,A.
2: repeat

3: Randomly draw (i, j,k ) from Ds

4: Calculate the global and attribute representations by the trained networks P and Fm .
5: Calculate the latent global and attribute representations according to Equation (10) and Equation (12).
6: Calculate the attribute influence according to Equation (13).
7: Update the parameters of neural networksH t

a ,Hb
a ,H t

д ,Hb
д , A according to Equation (20).

8: until Converge

Based on the latent attribute representation, one naive approach to measure the overall compat-
ibility q between the top t and the bottom b is averaging the pair-wise attribute interaction scores
as follows:

q =
1

MtMb

Mt∑
m=1

Mb∑
n=1

(ãt
m )T ãb

n . (11)

Apparently, this method overlooks the fact that different attributes can flexibly contribute to
the fashion compatibility in diverse matching contexts, as shown in Figure 2.

Given this, we utilize the attention mechanism [16, 17, 40] to flexibly assign the attribute influ-
ence in the overall compatibility modeling with different top-bottom contexts. Towards this end,
to evaluate the attribute influence of a given top t towards different bottom contexts, we adopt the
global visual representation gb of the bottom b, which can be derived from the output of the GAP
layer in the aforementioned GAP-modified network P. Considering that the latent compatibility
space may be highly non-linear, we further obtain the latent global visual representation of the
bottom b as follows:

g̃b = H b
д (gb ), (12)

whereH b
д is an MLP with l hidden layers. Thereafter, given the bottom context b, we can calculate

the influence of the attribute um of the top t as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

ωt
m = wTσ (Ua ãt

m + Uд g̃b + b),

λt
m =

exp (ωt
m )∑Mt

m=1 exp (ωt
m )
,

(13)

where Ua ∈ RDh×Dk , Uд ∈ RDh×Dl , b ∈ RDh , w ∈ RDh are parameters of the attention network,
andDh represents the hidden layer size of the attention network. λt

m denotes the attribute influence
of um for top t matching with the bottom b. In the similar manner, we can derive the latent global
representations of tops g̃t ’s with an MLP H t

д and the attribute influence λb
n of rn for bottom b

matching with the top t . σ (·) is the sigmoid function.
Based on the attribute influences, we can measure the overall compatibility q between top t and

bottom b as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

smn = λt
mλb

n (ãt
m )T ãb

n ,

q =
1

MtMb

Mt∑
m=1

Mb∑
n=1

smn ,
(14)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 17, No. 1, Article 36. Publication date: April 2021.
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Table 2. Attributes and Their Possible Values

Attributes Attribute Values Total

Category Shirt, Dress, Trousers, Jacket, Shorts, . . . 16
Color Green, Navy, Blue, White, Black, . . . 18
Fabric Denim, Jersey, Canvas, Leather, Sweat, . . . 14
Fit Skinny, Straight, Regular, High waist, Oversize, . . . 15
Pattern Animal, Plain, Photo, Floral, Pinstriped, . . . 16
Neckline V-neck, Square, Round, Backless, Envelope, . . . 11
Sleeve length Long, Short, Sleeveless, Strapless, Elbow, . . . 9

Attributes in bold can be only applied to tops.

where smn denotes the attribute-wise compatibility. In particular, (ãt
m )T ãb

n can be interpreted as
the interaction score between the attribute um of the top t and attribute rn of the bottom b. λt

mλb
n

represents the influence of the attribute pair (um , rn ) to the overall item compatibility.
Based on the attribute-wise compatibilities smn ’s, given a top t , we can ascertain the most ben-

eficial bottom attribute rn+ or the most harmful bottom attribute rn− as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪
⎩

n+ = arg max
n

Mt∑
m=1

smn ,

n− = arg min
n

Mt∑
m=1

smn .

(15)

Optimization. In a sense, we can easily derive the positive (compatible) top-bottom pairs from
those that have been composed together by fashion experts. However, with respect to the non-
composed fashion item pairs, we cannot safely draw the conclusion that they are incompatible, as
they can also be the missing potential positive pairs (i.e., pairs can be composed in the future). To-
wards this end, to better model the implicit compatibility preference between the tops and bottoms,
we naturally adopt the BPR framework, which has proven to be effective in the implicit preference
modeling [2, 10]. In particular, we derive a positive bottom set B+i = {bj ∈ B|(ti ,bj ) ∈ S} for each
top ti . Then, we assume that bottoms from the positive set B+i are more compatible than those
non-composed neutral bottoms for top ti . Hence, we build the following training set:

DS := {(i, j,k ) |ti ∈ T ,bj ∈ B+i ∧ bk ∈ B\B+i }, (16)

where the triplet (i, j,k ) indicates that bottom bj is more compatible with top ti compared to bk .
Then according to BPR, we have the objective function for local attribute-wise compatibility

modeling,

Llocal =
∑

(i, j,k )∈DS

−ln(σ (qi j − qik )), (17)

where qi j denotes the overall compatibility between ti and bj . In addition, considering that the
attribute representation may fail to capture certain global characteristics (e.g., style) of fashion
items, we also incorporate the global visual compatibility modeling by,

Lдlobal =
∑

(i, j,k )∈DS

−ln(σ (pi j − pik )), (18)

where pi j = (g̃t
i )T g̃b

j stands for the global compatibility between top ti and bottom bj . In fact, the
results derived from both perspectives should be consistent in a sense. Accordingly, we employ
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Table 3. The Discriminative Ability of the Learned
Attribute Representation on ACC (%) and AUC (%)

Attributes
Top Bottom

ACC AUC ACC AUC

Category 95.93 95.10 97.78 98.23
Color 89.27 84.64 88.00 97.47
Fabric 92.53 87.95 86.42 96.01
Fit 91.31 89.96 97.05 99.59

Pattern 93.70 91.15 85.91 98.20
Neckline 94.57 92.13 - -
Sleeve Length 96.96 96.91 - -
Average 93.47 91.12 91.03 97.90

the Kullback-Leibler (KL) Divergence to regularize the model results as follows:

Lkl =
∑

(i, j,k )∈DS

(
p̃i j loд

(
p̃i j

q̃i j

)
+ p̃ik loд

(
p̃ik

q̃ik

))
, (19)

where q̃i j and q̃ik are the softmax output ofqi j andqik , respectively, and mean the sum-normalized
distribution over the compatibility scores predicted from the attribute perspective. p̃i j and p̃ik can
be calculated in the same way. Ultimately, we have the following objective function:

L = Llocal + μLдlobal + γLkl , (20)

where μ and γ are the non-negative coefficients. Figure 4 illustrates the workflow of the attribute
interaction modeling, while the optimization procedure is summarized in Algorithm 1.

4 EXPERIMENT

In this section, we systematically evaluated the effectiveness of the proposed ExFCM on two real-
world datasets FashionVC and ExpFashion. We first introduce the experimental setting in Sec-
tion 4.1 and then present the result of each experiment in the following subsections. Specifically,
we evaluate the discriminative ability of the attribute-wise representation learning in Section 4.2.
We next compare the proposed ExFCM with several classic FCM methods in Section 4.3. To assess
the practicability, we evaluate the proposed ExFCM in the context of the complementary fashion
item retrieval in Section 4.4. Besides, in Section 4.5, we conduct the explainability analysis with
certain intuitive examples. Finally, to gain more deep insights, we illustrate the latent attribute
matching patterns in Section 4.6.

4.1 Experimental Settings

Dataset. Existing datasets for FCM are mainly collected from either the e-commerce websites,
like Amazon [27], or the fashion-oriented communities like Ployvore [8, 21, 33], where the co-
purchased items of users and collocated items by fashion lovers are treated as the compatible sam-
ples, respectively. As the co-purchase relation can be very noisy and less convincing, we adopted
FashionVC [33] and ExpFashion [21] as our primary datasets, both of which are crawled from
Polyvore and created by fashion experts. FashionVC consists of 20,726 outfits with 14,871 tops
and 13,663 bottoms, and ExpFashion comprises 200,745 outfits with 29,113 tops and 20,902 bot-
toms. Due to the absence of the attribute-level annotations in above two primary datasets, we
introduced an auxiliary dataset Fashion100K [1] to pretrain the attribute-wise representation
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Fig. 5. The visualization of part attribute representation in terms of color and category.

learning part, based on which we can obtain the attribute representations for each item in our pri-
mary datasets. Fashion100K consists of 101,021 images and adopts a taxonomy of 12 fashion item
attributes. On account of some uncommon attributes that have limited samples, we particularly
chose 7 attributes, as shown in Table 2. Notably, all these 7 attributes can be used to describe the
tops, while only 5 of them can be applied to the bottoms, i.e., Mt = 7 and Mb = 5.

Implementation Details. Pertaining to the attribute localization, the GAP-modified network
P consists of seven convolutional layers, a GAP layer, and multiple parallel attribute classifi-
cation branches, each of which specializes in an associated attribute classification. In addition,
each attribute representation learning network (i.e., Fm ) is composed of a two-layer MLP. We di-
vided the auxiliary dataset into three chunks: training set (80%), validation set (10%), and test-
ing set (10%). The training of the attribute-wise representation learning part consists of two
stages. We first pretrained P with only the attribute classification loss and then jointly trained
Fm ,m ∈ {1, 2, . . . ,Mt } and P according to Equation (9). We adopted the grid search strategy to de-
termine the optimal values for the hyper-parameters (i.e., α , θ ) among the values [0.1, 0.2, 0.3, 0.4]
and [0.7, 0.8, 0.9], respectively. Besides, both learning rates of two training stages are searched in
[0.00001, 0.00005, 0.0001, 0.0005]. We empirically found that this part achieves the optimal perfor-
mance when α = 0.3,θ = 0.8, and the learning rates of above two training stages with 0.0001 and
0.00005, respectively.

Regarding the attribute interaction modeling, we divided the positive pair set S into three
chunks: training set (80%), validation set (10%), and testing set (10%), and then generated triplets
for above three chunks according to Equation (16). To balance the amount of the two primary
datasets, three negative bottoms are sampled for each positive top-bottom pair in FashionVC while

Fig. 6. The related region of attributes located by AAM.
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Table 4. The Performance Comparison of FCM
among Different Methods with Respect to AUC (%)

Approaches FashionVC ExpFashion

IBR 62.11 73.33
IBR-Attr 62.66 73.42
Bi-LSTM-V 66.29 73.09
Bi-LSTM-V-Attr 67.34 73.44
BPR-DAE-V 67.02 83.09
BPR-DAE-V-Attr 67.31 83.44
ExFCM-NoAttn 65.49 75.76
ExFCM-NoKL 67.46 82.61
ExFCM 68.71 84.24

only one negative bottom for each pair from ExpFashion. As for the optimization, we adopted the
grid search strategy to determine the optimal values for the hyper-parameters (i.e., μ, γ ) among
the values [0.3, 0.4, 0.5] and [0.3, 0.4, 0.5], respectively. In addition, the learning rate and dropout
rate are searched in [0.0001, 0.0005, 0.001] and [0.3, 0.4, 0.5], respectively. We empirically found
that the proposed model achieves the optimal performance at l = 1, μ = 0.5,γ = 0.5 with dropout
rate as 0.5 and learning rate as 0.0005. Ultimately, both the above two key components of ExFCM
are optimized by the Adam algorithm and the batch size is set as 64.

4.2 On Representation Learning

To comprehensively demonstrate the effectiveness of the attribute-wise representation learning,
we adopted the accuracy (ACC) and the area under the ROC curve (AUC) [30] to evaluate its
performance in both the attribute classification and triplet-wise attribute similarity evaluation
tasks, respectively.

Table 3 shows the performance of the representation learning for each attribute in both tasks.
In terms of the top attributes, we observed that the attribute “sleeve length” gains the best perfor-
mance regarding both the ACC and AUC. One possible reason is that the “sleeve length” intrin-
sically has more discriminative spatial property and hence is easier to be captured by the AAM,
compared to the other attributes. As shown in Figure 6, the short sleeves are most likely to appear
around the upper shoulder region, while the long sleeves often cover the lower part of the top. In ad-
dition, we noticed that the performance of the attribute “category” is also promising, which may be
attributed to the fact that the “category” is often closely correlated with the “sleeve length”. Mean-
while, our attribute-wise representation learning presents the worst performance for the attribute
“color”. The possible explanations are twofold: (1) the attribute “color” is usually widely distributed
over the whole item with no distinct discriminative area; (2) the value labels of this attribute are
much fine-grained, such as the light blue and indigo, sharing high visual similarity and making
the representation learning more challenging. As for the bottom attributes, similar observations
can be found. The attributes, such as “category” and “fit”, that have clear spacial distribution fea-
tures gain better performance than the other attributes, such as the “color” and “fabric”. Overall,
as we can see, our attribute representation learning achieves the satisfactory performance with
an average accuracy of 92.45% and AUC of 93.95% in the contexts of attribute classification and
triplet-wise attribute similarity evaluation, respectively.

To gain a deep understanding of the performance, we performed the dimensionality reduction to
visualize the learned attribute representations. For illustration, we chose the attributes “color” and
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Fig. 7. Illustration of attentive attribute influence. Each number indicates the influence of a top attribute
when the top is paired with a bottom (one row for each bottom).

“category”, which have 19 and 5 possible values, respectively. We randomly sampled 40 fashion
items for each value of the attribute “color” and 120 for “category”. As shown in Figure 5,3 the
learned representations of similar attribute values are much closer than those of dissimilar ones,
which is consistent with the quantitative evaluations.

4.3 On Model Comparison

We compared our proposed ExFCM with the following baselines on FCM:

• IBR: IBR is an image-based recommendation method proposed by [27], which aims to model
the relations between objects based on their visual appearance. In particular, a latent visual
style space is learned based on which related objects can be retrieved using nearest-neighbor
search.

• IBR-Attr: We extend IBR by incorporating the attribute information (i.e., ãs
m ) extracted

from our pretrained attribute representation learning network to embed each fashion item
as follows:

vs = g̃s +
1

Ms

Ms∑
m=1

ãs
m , s ∈ {t ,b}, (21)

where g̃s denotes the global visual representation of the item.
• BPR-DAE-V: BPR-DAE is a content-based neural scheme introduced by [34], which ex-

plores the multi-modal data fusion of fashion items towards FCM. For the sake of fair-
ness, here, we use the variant of this model (BPR-DAE-V) with only the visual modality as
ours.

• BPR-DAE-V-Attr: Similarly, we introduce the attribute semantic representation into BPR-
DAE-V according to Equation (21).

• Bi-LSTM-V: Bi-LSTM in [8] models the compatibility of multiple fashion items in a sequen-
tial way. Similarly, we only feed the model with the visual modality of garments.

• Bi-LSTM-V-Attr: In the same way, we integrate the attribute representation into Bi-LSTM
according to Equation (21).

• ExFCM-NoAttn: This baseline is a derivative of our ExFCM, where the attention mecha-
nism is disabled and the influence for different attribute pairs is assigned uniformly.

3For better illustration, some overlapped images are randomly removed.
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Fig. 8. Performance of different models with respect to MRR at different numbers of the bottom candidates
T . (a) and (c) show the results of observed top query on FashionVC and Expfashion, respectively. (b) and (d)
are the results of unobserved top query on FashionVC and Expfashion, respectively.

• ExFCM-NoKL: This method is derived from our ExFCM by eliminating the KL loss, where
the FCM only focuses on the attribute perspective without considering the global visual
cues.

We adopted AUC as the evaluation metric, and the comparison results of ExFCM and baselines
on both FashionVC and ExpFashion are given in Table 4. From this table, we have the following
observations:

(1) IBR achieves the worst performance compared to the other methods. This may be attributed
to the fact that the factors contributing to compatibility range from style and color, to material
and shape, and their relations can be rather sophisticated. However, IBR exploits the compatibility
relations in a plain linear style space, which can be insufficient to model the highly complicated
compatibility between fashion items. On the contrary, BPR-DAE-V resorts to advanced DNNs to
seek the non-linear latent compatibility space, and thus improves the performance.

(2) Incorporating the attribute representations (-Attr) into IBR, Bi-LSTM-V, and BPR-DAE-V
does boost the performance, which implies that the attribute semantic cues and global visual sig-
nals complement each other in the FCM.

(3) ExFCM consistently outperforms all baselines in terms of AUC on both datasets, demonstrat-
ing the superiority of the attribute interaction modeling in evaluating the compatibility between
fashion items. Notably, ExFCM surpasses all the enhanced baselines (i.e., IBR-Attr, Bi-LSTM-V-Attr,
and BPR-DAE-V-Attr) that also incorporate the attribute representations learned with the help of
the auxiliary dataset, reflecting the necessity of exploring comprehensive attribute interactions.

(4) ExFCM shows remarkable superiority over ExFCM-NoAttn on both datasets, which enables
us to draw the conclusion that it is advisable to assign the influence of attribute pairs attentively
rather than uniformly. Accordingly, this confirms the assumption that different attributes of an
item can contribute differently in the compatibility with diverse matching items.

(5) The performance of ExFCM is consistently better than its derivative ExFCM-NoKL across
different datasets, suggesting that it is appropriate to consider the consistency between the com-
patibility evaluation results from the global visual view and local attribute perspective in the FCM
context.

To gain deeper insights, we checked the influence assignment results for different attributes of
the same top towards different bottoms. As can be seen from Figure 7, given the bottom bj , the
attribute “pattern” of the top ti gains the highest attention value, which is consistent to the clothing
matching rule that a striped top can go better with a striped bottom. Then, given the bottom bk ,
the influence assigned to the attribute “color” of the top is the largest one, which is reasonable due
to the color consistency between ti and bk .
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Fig. 9. Illustration of the ranking results of ExFCM on Observed Tops and Unobserved Tops scenarios for the
given testing tops. The bottoms highlighted in the red boxes are positive.

4.4 On Complementary Fashion Item Retrieval

To assess the practical value of our proposed ExFCM, we evaluated the performance with respect to
complementary fashion item retrieval, where we employed the Mean Reciprocal Rank (MRR) as the
evaluation metric. In particular, considering the fact that it is time-consuming to rank all bottoms
for each given top, we adopted the protocol in [9], i.e., we fed each top that appeared in our testing
set as a query and randomly selected T bottoms as the ranking candidates with only one positive
bottom. Then, we generated a ranking list of the bottoms for each given top query based on their
compatibility scores. In total, there are 1,954 unique tops and 6,343 unique tops in the testing set of
FashionVC and ExpFashion, respectively. In view of the sparsity of these real-world datasets, we
found that there are 1,262 tops and 2,198 tops that never appeared in the training set of FashionVC
and ExpFashion, respectively. To comprehensively evaluate the proposed model, we compared it
with different FCM methods in two testing scenarios: Observed Tops and Unobserved Tops.

For the sake of fairness, we compared our proposed ExFCM with baselines’ derivative, all of
which incorporate the attribute information according to Equation (21). As shown in Figure 8, we
observed that ExFCM consistently achieves the best retrieval performance in terms of MRR@T at
different number of bottom candidates (i.e., T ), demonstrating the effectiveness of our ExFCM in
the complementary item retrieval. In particular, regarding the MRR@10, ExFCM improves the per-
formance on observed tops by 6.0%, 4.5%, and 1.6%, while that on unobserved tops by 7.3%, 5.3%,
and 2.2%, as compared to IBR-Attr, Bi-LSTM-V-Attr, and BPR-DAE-V-Attr, respectively, which sug-
gests that ExFCM can cope well with the practical cold-start problem.

Figure 9 shows several intuitive ranking results in different scenarios. For illustration, we adopt
the case of T = 10, where for each top query, we selected 10 bottom candidates including 1 positive
one and 9 negative ones. The positive bottoms have been highlighted by red boxes. As we can see,
ExFCM tends to recommend the positive bottoms with the high priority. Although ExFCM fails to
accurately rank the positive item at the exact first place in some cases, the recommended bottoms
ranked before the positive bottom also seem to be compatible with the given top. As can be seen
from the first example of unobserved tops, the black jeans at the first place are not the positive
ground truth, but still goes well with the given white T-shirt due to the harmonious style and color.

4.5 On Explainability Analysis

To illustrate the explainability of our model, we show the pair-wise attribute compatibility of a
compatible outfit and an incompatible one in Figure 10. As we can see, in the first compatible
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Fig. 10. The visualization of the attribute compatibility of a compatible outfit and an incompatible outfit.

example, the interaction between the top’s “pattern” and the bottom’s “color” obtains the highest
score, which may be due to that the top’s pattern (floral) shares the same red color with the bottom
and can make the coordinated outfit. As for the incompatible example, most of the attribute pairs
between the top and bottom suffer from the relatively low compatibility. Interestingly, we noticed
that our model gives the highest compatibility to the attribute pair “fabric + fabric”. Intuitively,
this is reasonable, as the “fleece” top can go with a “denim” bottom, e.g., a fleece coat plus long
jeans. According to Equation (15), taking the summation over all pair-wise compatibility of one
attribute, we found that the most harmful attribute of the top for the bottom is the “category”,
while that of the bottom for the top is the “sleeve length”. Both results are reasonable according
to our common sense in fashion domain.

To quantitatively verify the explanations provided by ExFCM, we manually built a testing
dataset comprising 100 incompatible top-bottom pairs. Specifically, we first randomly sampled
some tops and then employed a fashion expert to manually choose one incompatible bottom for
each top. Notably, to facilitate the evaluation, we required the fashion expert to particularly choose
the incompatible bottom that has only one harmful/incompatible attribute for matching the given
top. To guarantee the quality of the testing dataset, we further employed another fashion expert
to check the selected incompatible bottoms and only kept the bottoms that are supported by both
fashion experts. Finally, we obtained 100 incompatible top-bottom pairs. Then, we employed our
ExFCM to ascertain the most harmful bottom attribute for each top-bottom pair according to Equa-
tion (15). Due to the fact that there is limited work on ascertaining the most harmful attribute for
incompatible outfit, here, we introduced the most common baseline, i.e., random (Rand) strategy,
which identifies the most harmful bottom attribute randomly. Table 5 shows the comparison re-
sults in terms of the accuracy (ACC). As can be seen, ExFCM significantly outperforms the random
method, demonstrating the superior explainability of ExFCM.

Table 5. Performance Comparison on
Locating the Most Harmful Attribute

Approaches ACC (%)

Rand 19.00
ExFCM 44.00
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Fig. 11. Attribute matching patterns on the “category” and “fabric”. Examples of the most common two
matching patterns are given for each attribute.

4.6 On Knowledge Discovery

We further conducted experiments on the knowledge discovery to mine the latent attribute match-
ing patterns in the fashion domain. In particular, we merged the positive top-bottom pairs on both
primary datasets and employed our ExFCM to obtain the pair-wise attribute compatibility for each
pair. To ensure the quality of the learned attribute matching patterns, for each top-bottom pair,
we only considered the attribute interaction assigned with the highest compatibility score as a
matching pattern candidate. In a sense, the matching attributes of a top and a bottom usually
come from the same type. Accordingly, here, we only considered the attribute matching patterns
that involve the same attribute of the top and the bottom. For illustration, Figure 11 visualizes the
attribute matching patterns regarding the attributes “category” and “fabric”. Each edge, linking a
top attribute value and a bottom attribute value, corresponds to a matching pattern. The width
of the edge reflects the frequency of the pattern occurred in our dataset. Intuitively, the larger
the frequency, the stronger the attribute matching pattern. Notably, for clear illustration, we only
keep matching patterns with the top 50% frequency. From this figure, we observed that: (1) the top
category “coat” goes better with the bottom category “dress”, while the “t-shirt” matches “skirt”
and “shorts” well in most cases; (2) The most versatile bottom categories are “dress” and “trousers”,
as they match more types of tops, ranging from the “coat” to “t-shirt”. (3) A top with the fabric
attribute of “sweat” (e.g., a sweatshirt) is more likely to make a compatible outfit with a “denim”
bottom (e.g., the jeans) or a “jersey” bottom (e.g., the sport pants). Overall, the mined attribute
matching patterns are reasonable according to our common sense and can facilitate people to
dress properly.

To comprehensively assess our model in knowledge discovery, apart from the above objective
evaluation, we further conducted the subjective user study. In this part, we invited 40 fashion-
lovers (20 males and 20 females) to participate the psycho-visual test over the top-5 “category”
and “fabric” matching patterns. In particular, each fashion-lover was asked to judge whether these
10 attribute matching patterns mined by our ExFCM are reasonable. We illustrate the female, male,
and average support rates of the psycho-visual test in Table 6. As we can see, overall, the fashion-
lovers supported the mined attribute matching patterns, which is consistent with the above objec-
tive evaluation result. Besides, for some gender-specific matching patterns, such as “coat+dress”
and “jacket+dress”, we noticed that the fashion-lovers with corresponding gender will give a higher
support rate. This is also reasonable due to the difference in the clothing matching styles and habits
of different genders.
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Table 6. Support Rate (SR) of Fashion-lovers over the Top-5 Attribute
Matching Patterns on the “Category”, “Fabric”

Id Top Bottom Female SR (%) Male SR (%) Average SR (%)

P1 coat dress 80.0 35.0 57.5
P2 t-shirt skirt 95.0 70.0 82.5
P3 t-shirt shorts 100.0 95.0 97.5
P4 jacket dress 65.0 35.0 50.0
P5 jumper tracksuit 85.0 65.0 75.0
P6 sweat jersey 80.0 75.0 77.5
P7 sweat denim 85.0 70.0 77.5
P8 sweat sweat 80.0 85.0 82.5
P9 jersey jersey 90.0 90.0 90.0
P10 jersey denim 100.0 80.0 90.0

The first five rows are the results of “category,” and the last five rows are of “fabric.”

5 CONCLUSION AND FUTURE WORK

In this work, we presented an attribute-wise explainable FCM scheme, dubbed ExFCM, which
is able to simultaneously generate the compatibility evaluation for input fashion items and ex-
planations for the evaluation result. In particular, we utilized the interaction mechanism to infer
attribute-level matching signals between fashion items without any attribute-level compatibility
annotations. Considering that the same attribute can have different influence levels in different
item contexts. The matching signals are dynamically aggregated into the overall evaluation by the
attention mechanism. Extensive experiments conducted on two real-world datasets demonstrate
that ExFCM can generate evaluations more accurately than several state-of-art methods, together
with reasonable explanations.

One limitation of our work is that we ignore the matching preference of different users (e.g.,
some users are fond of matching “coat” with “jeans”, while others prefer to match with “dress”).
In view of the matching habits of different users are not exactly the same, we plan to incorporate
the user preference into FCM in the future. In addition, we would like to encode more users’ side
information to conduct more well-rounded FCM, such as gender, occupation, and body shapes.
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