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ABSTRACT

Fashion Compatibility Modeling (FCM) is a new yet challenging

task, which aims to automatically access the matching degree

among a set of complementary items. Most of existing methods

evaluate the fashion compatibility from the common perspective,

but overlook the user’s personal preference. Inspired by this, a few

pioneers study the Personalized Fashion Compatibility Modeling

(PFCM). Despite their significance, these PFCM methods mainly

concentrate on the user and item entities, as well as their interac-

tions, but ignore the attribute entities, which contain rich semantics.

To address this problem, we propose to fully explore the related

entities and their relations involved in PFCM to boost the PFCM

performance. This is, however, non-trivial due to the heteroge-

neous contents of different entities, embeddings for new users, and

various high-order relations. Towards these ends, we present a

novel metapath-guided personalized fashion compatibility mod-

eling, dubbed as MG-PFCM. In particular, we creatively build a

heterogeneous graph to unify the three types of entities (i.e., users,

items, and attributes) and their relations (i.e., user-item interac-

tions, item-item matching relations, and item-attribute association

relations). Thereafter, we design a multi-modal content-oriented

user embedding module to learn user representations by inherit-

ing the contents of their interacted items. Meanwhile, we define

the user-oriented and item-oriented metapaths, and perform the

metapath-guided heterogeneous graph learning to enhance the user

and item embeddings. In addition, we introduce the contrastive

regularization to improve the model performance. We conduct ex-

tensive experiments on the real-world benchmark dataset, which

verifies the superiority of our proposed scheme over several cutting-

edge baselines. As a byproduct, we have released our source codes

to benefit other researchers.

∗This is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGIR ’22, July 11–15, 2022, Madrid, Spain

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8732-3/22/07. . . $15.00
https://doi.org/10.1145/3477495.3532038

Figure 1: Examples of users’ outfit compositions.
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1 INTRODUCTION

Given a set of fashion items, Fashion Compatibility Modeling [21],

FCM for short, is to estimate their matching degree towards a

proper outfit. Due to its significance and value in E-commerce like

fashion item recommendation [17], FCM has gained increasing at-

tention from both academic and industrial communities. Although

great success has been achieved by existing efforts [7, 13, 32], they

mainly focus on the general fashion compatibility modeling, that

is, exploring the compatibility among fashion items from the com-

mon perspective while overlooking users’ personal preferences. In

practice, this is not applicable to the real-world fashion product

recommendation scenarios.
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Nevertheless, aesthetics can be rather subjective. In other words,

different people usually have different preferences to make their

personal ideal outfits, whichmay be caused by their diverse growing

circumstances or education backgrounds. For example, as shown in

Figure 1, given the same pink shirt, user A prefers to match it with

the homochromatic skirt and high-heeled shoes; whereas user B

likes to coordinate it with the casual jeans and white sneakers. In

light of this, Personalized Fashion Compatibility Modeling, dubbed

as PFCM, taking users’ preferences into account when measuring

the compatibility among fashion items, merits our special attention.

In fact, a few pioneer researchers have noticed this phenomenon,

and dedicated their efforts to PFCM [6, 20, 29]. These efforts mainly

study the user and item entities, as well as their relations. They,

however, overlook another important entity type in PFCM, namely,

attributes. Conveying rich semantics, attributes play a pivotal role

in characterizing items and delivering users’ preferences to items.

For instance, we may express “I would like to buy a black coat

with a fur collar”, whereby the key information is conveyed via

the semantic attributes. To alleviate such a problem, we bring in

attributes associated with fashion items, and work towards fully ex-

ploring all the related entities (i.e., users, items, and attributes) and

their various relations (i.e., user-item interactions, item-item match-

ing relations, and item-attribute association relations) to promote

the PFCM performance. Without loss of generality, we particularly

study the research problem of “which bottom (top) is compatible to

the given top (bottom) for a specific user”.

Addressing the aforementioned research is, however, non-trivial

due to the following challenges. C1: PFCM involves three kinds

of entities with heterogeneous contents, namely, users, items, and

attributes. In particular, users are pure IDs, items are composed of

images and textual descriptions, while attributes are in the form

of textual phrases. Thereby, how to effectively organize these het-

erogeneous data seamlessly poses the first research challenge. C2:

Different from the item and attribute entities, we do not have the

concrete content information of user entities. The conventional user

embedding paradigm usually assigns a fixed one-hot embedding

or learnable embedding to represent each user. This is actually not

applicable to new users arrive during the testing phase, even for

the case that we have the historical interactions of these new users.

Accordingly, how to derive the user embedding is another challenge.

C3: In fact, apart from the direct relations, like the user-item in-

teraction relation, item-item matching relation, and item-attribute

association relation, there are also high-order relations among the

three types of entities. For example, similar bottoms matching with

the same top may share some common attributes. Another example

is that users with similar tastes tend to like the items with similar

attributes. In light of this, how to explore the high-order relations

among these entities to strengthen the model’s performance con-

stitutes the third challenge.

To address the challenge C1, we organize the users, items, and

attributes in the context of PFCM into a unified heterogeneous

graph. Specifically, these three kinds of entities are nodes of this

graph. The nodes are linked by three kinds of edges, which are user-

item interactions, item-item matching relations, and item-attribute

association relations. It is worth mentioning that, in this graph,

there is no direct edge linking the user and attribute entities. We

then devise a novel metapath-guided personalized compatibility

modeling scheme to address C2 and C3, named as MG-PFCM, as

shown in Figure 2. This scheme consists of three key components:

heterogeneous graph node embedding, metapath-guided hetero-

geneous graph learning, and personalized fashion compatibility

modeling. The first component works on embedding each type of

entities of our heterogeneous graph. To represent users, we devise

a multi-modal content-oriented user embedding module, which

derives the user embedding based on the multi-modal contents of

his/her interacted items, a straightforward cue indicating the user’s

preference. As to the second component, we firstly define multiple

user-oriented and item-oriented metapaths (e.g., User→ Item→

User and Item → Attribute → Item) to capture the high-order rela-

tions among entities, which naturally resolves the third challenge

C3. Thereafter, we conduct the multiple metapath-guided hetero-

geneous graph learning to obtain the multiple semantic-enhanced

user/item embedding of each user/item, whereby each metapath

corresponds to a specific semantic. A transformer [33] is used to

adaptively fuse the semantic-enhanced user/item embeddings un-

der different metapaths for each user/item. In the last component,

apart from the typical cross-entropy loss, we also introduce the

contrastive regularization to enhance the embedding learning.

Our main contributions can be highlighted in threefold:

• We define a heterogeneous graph to creatively unify three

types of entities and relations in the PFCM context. To the

best of our knowledge, we are the first on organizing the

multi-modal content and attribute information of fashion

items via a graph towards PFCM.

• We present a metapath-guided personalized compatibility

modeling scheme to perform the heterogeneous graph learn-

ing. It adopts the pre-defined metapaths to explore the high-

order relations among various entities, and hence strengthen

the user and item embeddings.

• Wederive users’ embeddings via fusing their interacted items

and introduce a contrastive regularization to improve the

embedding learning. As a byproduct, we conduct extensive

experiments on the benchmark dataset, which verifies the

superiority of our model to several cutting-edge baselines1.

2 RELATEDWORK

This work is related to personalized fashion compatibility modeling

and heterogeneous graph learning.

2.1 Personalized Fashion Compatibility
Modeling

Existing work on the fashion compatibility modeling [2, 12, 27]

can be mainly grouped into three classes: pair-wise, list-wise, and

graph-wise methods. To be more specific, 1) pair-wise methods fo-

cus on the compatibility modeling for a pair of items, like a top and

a bottom. For example, Song et al. [28] proposed a multi-modal pair-

wise compatibility modeling scheme with a dual autoencoder net-

work, which aims to answer the question “which bottom matches

the given top”. 2) List-wise methods treat the outfit, composing

of more than two items, as a sequence, and model the outfit com-

patibility with the sequential neural networks. For example, Han

1https://site2750.wixsite.com/pfcm.

Topic 6: Domain-Specific IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

483



Black BlueJeans Coat

Node Content
Encoding

Node Content
Encoding

(1) Heterogeneous Graph 
Node Embedding

Node Content
Encoding

(2) Metapath-guided
Heterogeneous Graph Learning

(3) Personalized Fashion 
Compatibility Modeling

… …

… …

… …

T
ra

n
s

fo
rm

e
r

Metapath-guided 
Semantic Propagation

Cross-entropy 
Loss

Contrastive 
Regularization

MLPMLP

MLP

MM

Semantic-enhanced 
Embedding Fusion

…
…

U - I - A

U - I - U

I - A - I

I - U - I

Figure 2: Illustration of the proposed MG-PFCM scheme. It consists of three key components: (1) heterogeneous graph node

embedding, (2) metapath-guided heterogeneous graph learning, and (3) personalized fashion compatibility modeling.

et al. [14] proposed to sequentially model the compatibility rela-

tionship among the fashion items in a given outfit with a Bi-LSTM.

And 3) graph-wise methods deem the outfit as a set of items, and

resort to the advanced graph neural networks to explore the outfit

compatibility. For example, Cucurull et al. [3] utilized a graph neu-

ral network to learn the items’ embeddings conditioned on their

context, and then estimated outfit compatibility. Despite the sig-

nificant progress made by these efforts, they purely focus on the

general item-item compatibility, and overlook users’ preferences in

the fashion compatibility estimation.

In fact, for the same fashion outfit, different users may have

different evaluation results. Inspired by this, some studies have

resorted to the personalized fashion compatibility modeling. For

example, a personalized compatibility modeling scheme for per-

sonalized clothing matching, named GP-BPR, is presented in [29],

which jointly considers the general (item-item) compatibility and

personal (user-item) preference for personalzied clothing matching.

Both the image and context description of items are utilized to-

wards the comprehensive modeling. Moving a step forward, Sagar

et al. [24] introduced an attribute-wise interpretable personal pref-

erence modeling scheme, to strengthen the model interpretability,

whereby the images and textual descriptions of items are explored.

Besides, Li et al. [19] developed a hierarchical fashion graph net-

work to simultaneously model the rich relationships among users,

items, and outfits.

Although these efforts have achieved compelling success, they

almost overlook the item attributes when estimating the compati-

bility. Attributes basically express the key semantics of items and

reflect the specific preferences of users. As a complementary ef-

fort, in this work, we incorporate the attribute entities and their

semantic contents to comprehensively study the PFCM problem.

2.2 Heterogeneous Graph Embedding

Due to the ubiquity of heterogeneous graph in the real-world set-

ting, containing multiple types of nodes and relations among these

nodes [11, 31], increasing research efforts have been dedicated

to the heterogeneous graph learning. In a sense, existing meth-

ods focus on the heterogeneous graph embedding via learning a

powerful low-dimensional vector representation for each node to

benefit the potential downstream applications, such as node classi-

fication [1, 23] and personalized recommendation [9, 40].

To accomplish this task, previous methods mostly rely on the

metapath [30], i.e., a sequence of node and edge types, delivering

certain semantic information of the graph. For example, Dong et

al. [8] developed the metapath-based random walks to construct

the heterogeneous neighborhood of a node and then utilized a skip-

gram model [22] to perform node embeddings. One key limitation

of this method is that it only utilizes a single metapath, which may

be insufficient to cover all useful information. To address this issue,

Shi et al. [25] designed a novel strategy to generate the meaningful

node sequences and utilized fusion functions to learn node repre-

sentation. In addition, Zhang et al. [37] introduced a heterogeneous

graph neural network model, named HetGNN, to jointly explore

the heterogeneous structures and contents of each node. To get

the superior node representation, several researchers [10, 35, 39]

have utilized the attention mechanism to softly select the most

useful metapath. For example, Wang et al. [35] proposed a hetero-

geneous graph attention network, which incorporates both node-

and semantic-level attention to learn the importance of nodes and

metapaths towards the node embedding. Subsequently, Zhang et

al. [39] proposed an attentive heterogeneous graph neural network

towards the heterogeneous graph embedding, where the node-level

attention is considered, and a semantic-level neural network is
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utilized rather than the semantic-level attention for capturing the

feature interaction among node embeddings under different meta-

paths. Differently, Xing et al. [36] regarded each metapath as a

specific view, and borrowed the idea of multi-view learning to com-

prehensively encode the node representations of different views

into a latent representation. To tackle the practical issue of missing

attributes, Jin et al. [17] proposed a general framework for heteroge-

neous graph neural network via attribute completion, comprising

two key components: pre-learning of topological embedding and

attribute completion with attention mechanism.

Inspired by the great success of these methods on heterogeneous

graph learning, we seamlessly organize the various entities and

relations in the context of PFCM into a unified heterogeneous

graph. It is worth emphasizing that we design a few task-specific

metapaths and creatively incorporate the transformer to fuse the

semantic-enhanced user/item embeddings.

3 METHODOLOGY

In this section, we first formulate the research problem, and then

detail the proposed MG-PFCM scheme.

3.1 Problem Formulation

In this work, we focus on fulfilling the task of PFCM. Without

loss of generality, we study the particular problem of “whether

the given bottom (top) matches the given top (bottom) and to-

gether compose a favorable outfit for the given user”. Suppose

that we have a set of 𝑁𝑢 users U = {𝑢1, 𝑢2, · · · , 𝑢𝑁𝑢 }, and a

set of 𝑁𝑚 items M = {𝑚1,𝑚2, · · · ,𝑚𝑁𝑚 }. For an arbitrary item

𝑚𝑖 , 𝑖 = 1, 2, · · · , 𝑁𝑚 , it is composed of an image 𝑣𝑖 , a textual de-

scription 𝑡𝑖 , and a set of attributesA𝑖 ⊆ A, whereA =
⋃𝑁𝑚

𝑖=1 A𝑖 =
{𝑎1, 𝑎2, · · · , 𝑎𝑁𝑎 } represents the entire attribute set in the form

of semantic phrases, like red color, wool material, and V-Neck de-

sign. Thereinto, the symbol 𝑁𝑎 denotes the total number of at-

tributes in our dataset. To simplify the formulation, in this work,

we only take the tops and bottoms into consideration. Therefore,

the set of items can be rewritten as M = M𝑡 ∪ M𝑏 , where M𝑡

and M𝑏 refer to the sets of tops and bottoms, respectively. Each

user 𝑢 is historically associated with a set of top-bottom pairs

X𝑢 = {(𝑚𝑢
𝑡1
,𝑚𝑢

𝑏1
), (𝑚𝑢

𝑡2
,𝑚𝑢

𝑏2
), · · · , (𝑚𝑢

𝑡𝑀𝑢
,𝑚𝑢

𝑏𝑀𝑢
)}, where 𝑚𝑢

𝑡∗
∈

M𝑡 , 𝑚𝑢
𝑏∗

∈ M𝑏 , and 𝑀𝑢 denotes the total number of interacted

top-bottom pairs by the user 𝑢.
We resort to a heterogeneous graph to organize the complicated

entities and relations within a unified structure. In particular, we

denote the graph as G = (E,R), where E = U ∪M ∪A denotes

the set of entity nodes, consisting of user entities, item entities,

and attribute entities, while R denotes the set of edges linking

nodes to characterize various relations among entities, i.e., user-

item historical interactions, item-attribute association relations,

and item-item matching relations.

Ultimately, we work towards learning the following compatibil-

ity estimation function,

𝑝𝑘𝑖 𝑗 = F (𝑚𝑘 ∈ M𝑏 (𝑡 ) |𝑢𝑖 ,𝑚 𝑗 ∈ M𝑡 (𝑏) ), (1)

where 𝑝𝑘𝑖 𝑗 denotes the compatibility degree of a bottom (top)𝑚𝑘 to

the given top (bottom)𝑚 𝑗 for the user 𝑢𝑖 .

3.2 MG-PFCM

As illustrated in Figure 2, MG-PFCM consists of three components:

1) heterogeneous graph node embedding, 2) metapath-guided het-

erogeneous graph learning, and 3) personalized fashion compatibil-

ity modeling. In this subsection, we elaborate each of them.

3.2.1 Heterogeneous GraphNode Embedding. This component aims

to derive the initial node-level representations in the heterogeneous

graph. As the heterogeneous graph has three types of entities, and

the node contents differ remarkably. We hence learn their embed-

dings separately as shown in Figure 3.

Item Entity Embedding. Each item entity is composed of an

image and a textual description. The multi-modal cues of each

item mutually complement each other. As to an arbitrary item𝑚𝑖 ,

regardless of its category (i.e., top or bottom), we utilize the ResNet,

which has shown compelling success in many computer vision

tasks [15], to extract its visual feature. Meanwhile, we adopt the

pre-trained BERT to obtain its textual feature2, due to its prominent

performance in textual representation learning [5, 26]. Specifically,

we employ the averaged hidden states corresponding to the special

token attached at the beginning of the input sequence, i.e., [CLS],

of the last two layers of BERT as the representation of the textual

description. Finally, we concatenate the visual and textual features

of each item to derive its final embedding, and use a learnable

fully-connected layer to project the item embedding into a lower

dimensional space. Mathematically, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e𝑣𝑖 = ResNet (𝑣𝑖 ) ,

e𝑡𝑖 = BERT (𝑡𝑖 ) [𝐶𝐿𝑆 ] ,

e𝑚𝑖 = 𝑓𝑡
(
[e𝑣𝑖 , e𝑡𝑖 ]

)
,

(2)

where e𝑣𝑖 ∈ R𝐷𝑣 and e𝑡𝑖 ∈ R𝐷𝑡 refer to the visual and textual

embedding of the item𝑚𝑖 , respectively. Accordingly, the symbols

𝐷𝑣 and 𝐷𝑡 are the dimensions of the visual and textual embed-

dings, respectively. ResNet and BERT denote the corresponding

neural networks. [, ] refers to the concatenation operation, 𝑓𝑡 de-
notes the learnable fully-connected layer, and e𝑚𝑖 ∈ R

𝐷 is the final

embedding of the item𝑚𝑖 .

Attribute Entity Embedding. To fully utilize the semantic

content of each attribute entity, we also resort to the pre-trained

BERTwith a learnable fully-connected layer to derive its embedding

instead of using the one-hot vector or treating it as the learnable

parameter. Notably, for attribute embedding, we only adopt the

representation of the special token [CLS] from the last layer of BERT

due to its shorter length, as compared with the textual description.

Formally, for each attribute entity 𝑎𝑙 , we obtain its embedding as

follows,

e𝑎𝑙 = 𝑓𝑎 (BERT (𝑎𝑙 ) [𝐶𝐿𝑆 ] ), (3)

where e𝑎𝑙 ∈ R𝐷 stands for the initial embedding of the attribute

entity 𝑎𝑙 , and 𝑓𝑎 denotes the fully-connected layer towards the

embedding fine-tuning.

User Entity Embedding. Instead of using the one-hot embed-

dings, we resort to aggregating all the embeddings of the user’s

one-hop neighbor nodes (i.e., all the items interacted by the user

before) to derive the initial embedding of each user entity. The

2Before feeding a text into the BERT, the text is first tokenized into standard
vocabularies.
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Figure 3: Heterogeneous graph node embedding.

underlying philosophy is two-fold: 1) the items that are historically

interacted by users signal users’ preferences and tastes, and 2) the

embedding of a cold-start user can also be derived as long as his/her

interacted items appeared before. Concretely, we reach the user

embedding below,

e𝑢𝑖 =
1

|N𝑢𝑖 |

∑
𝑚𝑖 ∈N

𝑢𝑖

e𝑚𝑖 , (4)

where e𝑢𝑖 ∈ R𝐷 denotes the embedding of the user 𝑢𝑖 , and N𝑢𝑖

refers to the set of one-hop neighbors of the user entity 𝑢𝑖 .

3.2.2 Metapath-guided Heterogeneous Graph Learning. In this com-

ponent, we conduct the metapath-guided heterogeneous graph

representation learning to refine each entity’s embedding with

their context information. In particular, we first define a few user-

/item-oriented metapaths to capture the high-order relations among

entities, and then perform the metapath-guided semantic propa-

gation to derive multiple semantic-enhanced embeddings for each

user/item entity. Therein, each applicable metapath corresponds to

a specific semantic-enhanced embedding. Ultimately, we fuse all

the semantic-enhanced embeddings via a transformer to obtain the

final user/item representation.

User-/Item-oriented Metapath Definition. According to [30],

a metapath is defined as a path in the form of 𝑋1
𝑅1
→ 𝑋2

𝑅2
→ · · ·

𝑅𝑛
→

𝑋𝑛+1, which describes a composite relation between entities. In our

work, as illustrated in Figure 4, there are actually various metapaths

residing in our constructed heterogeneous graph, whereby three

entities and rich relations exist. Intuitively, different metapaths

reflect different semantics. For example, the metapath UIA3 implies

that a user historically prefers an item and that item posses an

attribute, while UIU indicates that these two end users like the

same fashion item. Analogously, the metapath IAI refers to that the

two end items share the same attribute, while IUI conveys that the

two end items are interacted by the same user. Pertaining to the

PFCM context, we only adopt metapaths that start from user entities

and item entities. Formally, let P𝑢𝑠𝑒𝑟 = {𝑟1, · · · , 𝑟𝑌 } and P𝑖𝑡𝑒𝑚 =

3Due to the limited space, we omit the relation types between entities.

Black BlueJeans Coat
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Figure 4: Illustration of user- and item-oriented metapaths.

{𝑠1, · · · , 𝑠𝑍 } denote the set of pre-defined user-oriented and item-

orientedmetapaths, respectively.𝑌 and𝑍 stand for the total number

of user-oriented and item-oriented metapaths, respectively.

Metapath-guided Semantic Propagation. Based on the pre-

defined user- and item-oriented metapaths, we are capable of deriv-

ing the corresponding metapath-guided user-oriented subgraphs

for each user entity and the item-oriented subgraphs for each item

entity via the breadth first search strategy. Thereafter, based on

the different information encoded by different metapaths, we can

learn the user/item entity’s embeddings with different semantics.

To intuitively clarify how to refine users’ or items’ embeddings,

we take the metapath UIA as an example. Other metapath-guided

learning repeats the same procedure.

Suppose that the metapath UIA is applicable to the user entity

𝑢𝑖 . We then build a subgraph GUIA
𝑢𝑖 for the user entity 𝑢𝑖 . Since

the length of the metapath UIA is three, we denote the one-hop

neighbors of user entity 𝑢𝑖 as N
UIA(1)
𝑢𝑖 consisting of all the items

the user once interacted. In the same way, we denote the two-

hop neighbors of the user entity 𝑢𝑖 as N
UIA(2)
𝑢𝑖 , comprising all the

attributes associated with items inN
UIA(1)
𝑢𝑖 . Following that, we first

aggregate the information from the two-hop neighbors to enhance

the one-hop neighbors’ embeddings, and then based on that learn

the user’s semantic-enhanced embedding as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
e
UIA
𝑚𝑖

= H
(
e𝑎𝑙 |𝑎𝑙 ∈ N

UIA(2)
𝑢𝑖

)
,𝑚𝑖 ∈ N

UIA(1)
𝑢𝑖 ,

h
UIA
𝑢𝑖 = H

(
e
UIA
𝑚𝑖

|𝑚𝑖 ∈ N
UIA(1)
𝑢𝑖

)
,

(5)

whereH is the aggregation function, and eUIA𝑚𝑖
denotes the semantic-

enhanced embedding of the item entity𝑚𝑖 , which is an one-hop

neighbor of the user entity𝑢𝑖 . h
UIA
𝑢𝑖 represents the semantic-enhanced

embedding of the user entity 𝑢𝑖 . It is worth highlighting that, dur-

ing each hop aggregation, different neighbors may play different

roles in characterizing the center entity. Concretely, some attributes

may be more important in conveying the item’s properties, while

some items may contribute more in reflecting the user’s prefer-

ence. In light of this, we adopt the graph attention mechanism of

GAT [34] as the aggregation function, to highlight the informative

and meaningful neighbor nodes. For simplicity, we take the aggre-

gation operation over the one-hop neighbors of the user entity 𝑢𝑖
as an example, and that over the two-hop neighbors can be defined

in a similar way. Specifically, the aggregation operationH over the
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one-hop neighbors of the user entity 𝑢𝑖 can be written as follows,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h
UIA
𝑢𝑖 = e𝑢𝑖 + 𝜎

(∑
𝑚 𝑗 ∈N

UIA
𝑢𝑖

𝛼𝑖 𝑗e𝑚 𝑗

)
,

𝛼𝑖 𝑗 =
exp

(
𝜎
(
W

UIA [𝑒𝑢𝑖 ,𝑒𝑚𝑗 ]
))

∑
𝑚𝑗 ∈N

UIA
𝑢𝑖

exp
(
𝜎
(
WUIA [𝑒𝑢𝑖 ,𝑒𝑚𝑗 ]

)) , (6)

where 𝜎 (·) denotes the activation function, [, ] refers to the concate-
nation operation, and W

UIA ∈ R2𝐷∗1 is the node-level attention

vector for the information aggregation under the metapath UIA.

Theoretically, repeating the above process for semantic prop-

agation for all the other user-oriented metapaths, we can derive

𝑌 semantic-enhanced user embeddings for user entity 𝑢𝑖 . How-
ever, in practice, not every user-oriented (item-oriented) metapath

can be applied to a given user (item) entity. For example, once

a user shares no preferred item with other users, we will not be

able to derive the subgraph according to the meta-path UIU. Ac-

cordingly, we use P𝑢𝑖 = {𝑟𝑖1 , · · · , 𝑟𝑖𝑌𝑖 } to denote the set of meta-

paths that can be applied to the user entity 𝑢𝑖 , where 𝑌𝑖 refers
to the total number of metapaths applicable to the user 𝑢𝑖 , and
𝑟𝑖𝑛 ∈ P𝑢𝑠𝑒𝑟 , 𝑛 = 1, · · · , 𝑌𝑖 . Based upon P𝑢𝑖 , we can derive the cor-

responding semantic-enhanced embeddings for the user entity 𝑢𝑖 ,

termed as {h
𝑝
𝑢𝑖 |𝑝 ∈ P𝑢𝑖 }, following the above metapath-guided se-

mantic propagation process. Similarly, we use P𝑚𝑖 = {𝑠𝑖1 , · · · , 𝑠𝑖𝑍𝑖 }
to denote the set of metapaths that can be applied to the item entity

𝑚𝑖 , where 𝑍𝑖 is the total number of metapaths applicable to the

item𝑚𝑖 , and 𝑠𝑖𝑧 ∈ P𝑖𝑡𝑒𝑚, 𝑧 = 1, · · · , 𝑍𝑖 . In the same manner, we

reach the semantic-enhanced embeddings for the item entity𝑚𝑖 as

{h
𝑝
𝑚𝑖

|𝑝 ∈ P𝑚𝑖 }.

Semantic-enhanced Embedding Fusion. Thus far, we have

achieved multiple semantic-enhanced embeddings for each user

and item entity under different metapaths, and each embedding

characterizes one aspect. To comprehensively represent each user

or item, we propose to fuse the multiple embeddings of each user

or item. In particular, we leverage the transformer [33] without

the positional coding to perform the multi-semantic embedding

fusion, mainly due to the following two concerns: 1) the number of

semantic-enhanced embeddings for different users can be different;

and 2) there is no explicit order among these semantic-enhanced

embeddings of each user or item entity. To ensure that the fused

embeddings of the users and items are in the same space, we adopt

a single transformer to fulfil both user and item entities’ embedding

fusion as follows,{
h̃𝑢𝑖 = Transformer(h

𝑝
𝑢𝑖 |𝑝 ∈ P𝑢𝑖 )

h̃𝑚𝑖 = Transformer(h
𝑝
𝑚𝑖

|𝑝 ∈ P𝑚𝑖 )
(7)

where h̃𝑢𝑖 and h̃𝑚𝑖 are the final representation for the user 𝑢𝑖 and
item𝑚𝑖 , respectively.

3.3 Personalized Fashion Compatibility
Modeling

To accomplish the task of PFCM, we first build the training set

Ω = {(𝑢𝑖 ,𝑚 𝑗 ,𝑚𝑘+,𝑚𝑘−)|𝑚 𝑗 ∈ M𝑡 (𝑏) ,𝑚𝑘+,𝑚𝑘− ∈ M𝑏 (𝑡 ) , 𝑦𝑘+𝑖 𝑗 =

1, 𝑦𝑘
−

𝑖 𝑗 = 0}, where 𝑦𝑘+𝑖 𝑗 = 1 denotes the triplet (𝑢𝑖 ,𝑚 𝑗 ,𝑚𝑘+) is

compatible, i.e., the item 𝑚𝑘+ goes well with the given item 𝑚 𝑗

according to the user 𝑢𝑖 ’s preference. 𝑦
𝑘−
𝑖 𝑗 = 0 indicates that the

triplet (𝑢𝑖 ,𝑚 𝑗 ,𝑚𝑘−) is incompatible. Following that, for each triplet,

we obtain each entity’s representation according to Eqn. (7), namely,

h̃𝑢𝑖 , h̃𝑚 𝑗 , and h̃𝑚𝑘+ / h̃𝑚𝑘− . We then resort to the MLP to derive the

compatibility score for each triplet as follows,

𝑝
𝑘+(−)
𝑖 𝑗 = MLP0 ( [h̃𝑢𝑖 , h̃𝑚 𝑗 , h̃𝑚𝑘+(−) ]), (8)

where 𝑝𝑘+(−)𝑖 𝑗 is the predicted compatibility score for the given

triplet.We then adopt the cross-entropy loss as follows,

L(𝑖, 𝑗,𝑘+,𝑘−) = −𝑙𝑜𝑔
( 𝑒𝑥𝑝 (𝑝𝑘+𝑖 𝑗 )

𝑒𝑥𝑝 (𝑝𝑘+𝑖 𝑗 ) + 𝑒𝑥𝑝 (𝑝𝑘−𝑖 𝑗 )

)
. (9)

Intuitively, the compatible and incompatible triplets should fol-

low some compatible and incompatible patterns, respectively. In

light of this, given a compatible triplet (𝑢𝑖+ ,𝑚 𝑗+ ,𝑚𝑘+ ), we argue

that its latent representation should be more similar to that of

a compatible triplet as compared to that of an incompatible one

(𝑢𝑖− ,𝑚 𝑗− ,𝑚𝑘− ). Accordingly, we further introduce the contrastive

regularization to regulate the similarity between latent represen-

tations of different triplet pairs. Suppose that 𝑝+1 = (𝑢𝑖+1 ,𝑚 𝑗+1
,𝑚𝑘+

1
)

and 𝑝+2 = (𝑢𝑖+2 ,𝑚 𝑗+2
,𝑚𝑘+

2
) are two compatible triplets, while 𝑛− =

(𝑢𝑖− ,𝑚 𝑗− ,𝑚𝑘− ) is an incompatible one. We utilize two MLPs to

obtain the latent representations for these three triplets as follows,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h̃𝑝+
1
= MLP1 ( [h̃𝑢𝑖+1

, h̃𝑚𝑝+1
, h̃𝑚𝑞+1

]),

h̃𝑝+
2
= MLP2 ( [h̃𝑢𝑖+2

, h̃𝑚𝑝+2
, h̃𝑚𝑞+2

]),

h̃𝑛− = MLP2 ( [h̃𝑢−
𝑖
, h̃𝑚𝑝− , h̃𝑚𝑞− ]),

(10)

where h̃𝑝+
1
and h̃𝑝+

2
are the latent representations of the two compat-

ible/positive triplets, while h̃𝑛− is the latent representation of the

incompatible/negative triplet.We then use the following contrastive

regularization as follows,

L
(𝑝+

1 ,𝑝
+
2 ,𝑛

−)
𝑐𝑜𝑛𝑠 = −𝑙𝑜𝑔

𝑒𝑥𝑝 (sim(h̃p+1
, h̃p+2 ))

𝑒𝑥𝑝 (sim(h̃p+1
, h̃p+2 )) + 𝑒𝑥𝑝 (sim(h̃p+1

, h̃n− ))
,

(11)

where 𝑠𝑖𝑚(, ) refers to the dot product operation. Finally, our ob-

jective function can be written as follows,

L =
∑

(𝑢𝑖 ,𝑚 𝑗 ,𝑚𝑘+,𝑚𝑘−)

L(𝑖, 𝑗,𝑘+,𝑘−) + 𝜆
∑

(𝑝+
1 ,𝑝

+
2 ,𝑛

−)

L
(𝑝+

1 ,𝑝
+
2 ,𝑛

−)
𝑐𝑜𝑛𝑠 , (12)

where 𝜆 is the non-negative hyperparameter balancing the impor-

tance of the cross-entropy loss and contrastive regularization.

4 EXPERIMENT

In this section, we conducted experiments over real-world datasets

by answering the following research questions.

• RQ1: DoesMG-PFCMoutperform state-of-the-art baselines?

• RQ2: How does each module affect MG-PFCM?

• RQ3: Is our model sensitive to the number of the transformer

and GAT layers?

• RQ4: What is the intuitive performance of MG-PFCM?

4.1 Experimental Settings

In this part, we present the dataset, evaluation tasks, metrics, and

the implementation details.

Topic 6: Domain-Specific IR SIGIR ’22, July 11–15, 2022, Madrid, Spain

487



Table 1: Statistics over our newly constructed dataset.

Table of Content Statistical Results

User 1, 769
Top 53, 092

Bottom 41, 157
Attribute 98

Outfit (top-bottom) 81, 937
Triplet (user-top-bottom) 82, 079

User historical interacted outfits-min 10

User historical interacted outfits-max 200

User historical interacted outfits-avg 46

4.1.1 Dataset. To justify ourmodel, similar to existingmethods [24,

29], we also resorted to the public benchmark dataset IQON3000 [29],

due to the fact that each item in IQON3000 has not only the vi-

sual image and textual description, but also the semantic attributes,

such as the color and category. In particular, IQON3000 consists

of 308, 747 outfits, composed by 672, 335 items. To fit our task and

ensure the quality of the dataset, we did not completely follow up

the experimental setting in [24, 29] considering the following two

concerns. 1) As to a given user, they only focus on matching bot-

toms for a given top. By contrast, in our work, the top and bottom

is arbitrarily switchable for a given user. That is to say, we aim to

match either tops for a given bottom, or bottoms for a given top.

And 2) they did not set the criterion for filtering out users with

limited interacted items. Accordingly, we derived our own dataset

from IQON3000. In particular, we only remained the outfits that

contain a top and a bottom, and users who have interacted with no

less than 10 and no more than 200 outfits to keep the dataset rela-

tively balanced. Finally, there are 82, 079 user-top-bottom triplets

involved 1, 769 users. The detailed statistics are summarized in

Table 1. Meanwhile, the attributes and their corresponding value

examples of the derived dataset are shown in Table 2.

Notably, all these retained triplets are positive ones, namely,

compatible triplets. We then randomly split these user-top-bottom

triplets into four chunks: graph construction set, training set, val-

idation set, and testing set, by the ratio of 6 : 2 : 1 : 1, resulting

in 49, 297 triplet for constructing the heterogeneous graph, 16, 416
triplets for training, 8, 208 triplets for validation, and 8, 208 triplets
for testing. Thereafter, as to each positive triplet in the training set,

validation set, or testing set, we randomly selected an item (either

the top or the bottom) from this triplet as the given item, leaving the

other item as the target (positive) one. Following that, we replaced

the target (positive) item with a randomly sampled one sharing the

same category with the target one, to derive a negative triplet. It

is worth mentioning that to ensure the fairness, considering the

baseline methods do not need the specific graph construction set,

we train them with both the graph construction set and training

set, where the negative triplets in the graph construction set are

derived in the same manner.

4.1.2 Evaluation Tasks and Metrics. Towards comprehensive eval-

uation, similar to previous studies [4, 12, 14, 24, 29], we justified

our proposed MG-PFCM scheme with two tasks: the compatibility

estimation task and the complementary item retrieval task. The

Table 2: Attributes and their possible value examples.

Attribute Possible Value Examples Total Number

Color Grey, Black, Red, · · · 12

Price Low, Middle, High. 3

Category Coat, Skirt, Jacket, · · · 12

Variety Tops, Dress, Trousers, · · · 5

Material Fur, Leather, Denim, · · · 31

Pattern Stripe, Print, Dot, · · · 15

Design Frill, V-neck, Ribbons, · · · 13

Dress Length Short, Middle, Long. 3

Sleeve Length Sleeveless, Long, Short, · · · 4

former task is to evaluate the compatibility score of an arbitrary top-

bottom pair for a specific user, where we adopted the AUC (Area

Under the ROC curve) [38] as the evaluation metric. The latter task

is to retrieve the target complementary and compatible item from

a set of item candidates for a given user and a given item (either a

top or a bottom). Specifically, for each positive triplet, we randomly

selected one item as the target item, and additionally introduced

𝑇 negative items to constitute the whole set of item candidates.

These item candidates will be ranked according to their compatibil-

ity scores to the given user and item, calculated by Eqn.(8). In the

complementary item retrieval task, we utilized the Mean Reciprocal

Ranking (MRR) [16] as the evaluation metric.

4.1.3 Implementation Details. Pertaining to the visual embedding

of items, we utilized ResNet18 and converted each item image into

a 512-D vector. Notably, the ResNet18 is also fine-tuned with the

whole model. Regarding the textual feature extraction of items, we

resorted to the implementation of BERT4 for Japanese text con-

sidering our dataset is in Japanese, and embed each item’s textual

description into a 768-D vector. The dimension of final item em-

bedding 𝐷 = 512. Similarly, using this BERT implementation, each

semantic attribute is also embedded into a 768-D vector. We set

the number of layers of all MLPs used in our scheme as 2 and

employed Gaussian Error Linear Units (GELU) as the activation

function. In practice, we adopted the following set of user-oriented

metapaths P𝑢𝑠𝑒𝑟 = {UIAIU,UIU,UIA}, and item-oriented metap-

aths P𝑖𝑡𝑒𝑚 = {IAI, IUI, II, IIA}. During the subgraph construction

for each user/item entity, for efficiency, we set the maximum neigh-

bor size of each node as 5. As to the optimization, we adopted the

adaptive moment estimation method (Adam [18]). The learning

rate is warmed up to the peak value, which is set to 1e-4, in the 6%

steps and then linearly decayed to 0. The hyperparameter 𝜆 is set

to 1, and the batch size is set to 24. The number of negative outfits

in the complementary item retrieval task, i.e., 𝑇 is set to 4. All the

experiments are implemented by PyTorch over a server equipped

with 4 A100-PCIE-40GB GPUs.

4.2 On Model Comparison (RQ1)

To validate the effectiveness of our proposed scheme, we chose the

following state-of-the-art baselines for comparison.

4https://huggingface.co/cl-tohoku/bert-base-japanese-char/tree/main.
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Table 3: Performance comparison between our proposed MG-

PFCM and other baseline methods in terms of AUC andMRR

over IQON3000. The best results are in bold, while the second

best results are underlined.

Approaches PAI-BPR HFGN GP-BPR MG-PFCM

AUC 0.6096 0.6783 0.7146 0.7730

MRR 0.5456 0.6173 0.6346 0.6427

• GP-BPR [29] is a comprehensive personal preference mod-

eling scheme, where the multi-modal data ( e.g., the image

and text description) of fashion items are jointly explored.

• PAI-BPR [24] is an attribute-wise interpretable compati-

bility modeling scheme, which solves the problem of inter-

pretability in clothing matching by locating the discordant

and harmonious attributes between fashion items.

• HFGN [19] refers to a hierarchical fashion graph network,

which simultaneously models the relationships among users,

items, and outfits.

Table 3 shows the performance comparison among different

methods in terms of AUC and MRR. From this table, we have the

following observations. 1) our proposed MG-PFCM scheme consis-

tently outperforms all baseline methods over different metrics. In

particular, MG-PFCM performs better than PAI-BPR and GP-BPR,

which indicates the advantage of our scheme that organizes the

various entities and relations in the context of PFCM into a unified

heterogeneous graph, and utilizes the metapath-guided heteroge-

neous graph learning towards personalized fashion compatibility

modeling. 2) Our method surpasses the heterogeneous graph based

methodHFGN remarkably over bothmetrics, implying the necessity

of considering the items’ attributes. And 3) GP-BPR outperforms

HFGN, which may be due to that HFGN only utilizes the visual

information of fashion items, while GP-BPR jointly considers the

images and textual descriptions of items.

4.3 On Ablation Study (RQ2)

To verify the importance of each component in our model, we

conducted ablation experiments on the following derivatives.

• w/o text: To study the impact of the textual description of

fashion item for PFCM, we removed the textual embeddings

of items, and kept other parts unchanged.

• w/o image: Similarly, to justify the necessity of incorporat-

ing the item images in the context of PFCM, we omitted the

items’ visual embeddings, and kept other parts unchanged.

• w/o attribute: To verify the importance of the item at-

tributes, we discarded the attribute entities as well as the

attribute-related metapahts. The rest of our MG-PFCM is

unchanged.

• w/o (II,UIA): To validate the necessity of incorporating the

metapaths II and UIA, which can be treated as the subpaths

of metapaths i.e., IIA and UIAIU, respectively, we omitted

them during our heterogeneous graph learning.

• w/o contrastive: To explore the effect of contrastive regu-

larization component, which is used to enhance the latent

representation of each entity, we removed the contrastive

regularization by setting 𝜆 = 0 in Eqn.(12).

Table 4: Ablation study of our proposed MG-PFCM on

IQON3000 dataset. The best results are in bold.

Method AUC MRR

w/o text 0.7630 0.6392

w/o image 0.7655 0.6382

w/o attribute 0.7339 0.5717

w/o (II,UIA) 0.7639 0.6392

w/o contrastive 0.7647 0.6338

w mean pooling 0.7627 0.6392

MG-PFCM 0.7730 0.6427

Figure 5: Sensitivity analysis of our model performance in

terms of AUC (%) with respect to (a) the number of trans-

former layers, and (b) the number of GAT layers.

• wmean pooling: To evaluate the function of transformer

component in the semantic embedding fusion, we replaced

the transformer component with the mean pooling function.

Table 4 summarizes the ablation study results. From this table,

we observed that our model consistently outperforms all the above

derivatives, which demonstrates the effectiveness of each compo-

nent in our proposed MG-PFCM. Specifically, we have the following

detailed observations. 1) Both w/o text and w/o image perform in-

ferior to MG-PFCM, which suggests that it is essential to consider

both modalities of fashion items to boost the item representation

learning. 2) w/o attribute presents the worst performance, reflect-

ing the benefit of incorporating the attribute entities as well as their

semantic contents into personalized fashion compatibility modeling.

3) w/o (II,UIA) performs worse than our MG-PFCM, which suggests

that different metapaths do deliver different semantics, and it is

advisable to consider the sub meta-paths. 4) The performance of

w/o contrastive drops, as compared to MG-PFCM, indicating that

the contrastive regularization is indeed helpful to strengthen the

fashion entity representation learning. And 5) w mean pooling also

performs worse than our MG-PFCM, reflecting the effectiveness of

the transformer in fusing the unfixed number of semantic-enhanced

embeddings of users/items.

4.4 On Sensitivity Analysis (RQ3)

In this part, we evaluated the sensitivity of our model in terms of

the number of transformer and GAT layers. In particular, we varied

the number of transformer layers from 1 to 5 with the step size

of 1. Considering that most of our metapaths involve more than 2

entities, we thus changed the number of GAT layers from 2 to 6 with

the step of 1. Figure 5 (a) and (b) illustrate the performance of our

model on the validation set and testing set with different numbers

of transformer layers and GAT layers, respectively. As can be seen,
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User History Preference Given Item Positive Item Negative Item

User 1

User 2

User 3

0.8164 0.1836MG-PFCM

0.7388 0.2612

Brown

Skirt

Gray
Blouse

Floral pattern
Ruffle

Black
Blouse
Suede

w/o attribute

MG-PFCM
w/o attribute

MG-PFCM
w/o attribute

0.5332 0.4668

0.5742 0.4258

Beige

Cardigan
Tops
Wool

White
Long pants

Stripe

Black
Skirt

Floral pattern

0.6714
0.4639

0.3283
0.5361

Beige
Blouse
Tops

Black
Long skirt

Green
Long pants

×
Figure 6: Illustration of several PFCM results obtained by our MG-PFCM and w/o attribute derivative.

our model achieves relatively stable performance with different

numbers of transformer and GAT layers, which implies that our

model is not sensitive to these two hyperparameters. Accordingly,

in practice, to improve the model efficiency, we set the number of

transformer and GAT layers as 1 and 2, respectively.

4.5 On Case Study (RQ4)

To gain more intuitive insights into our model, we also conducted

the case study of our method and the w/o attribute derivative.

Figure 6 shows three testing samples, where the users’ historical

preferred top-bottom pairs and items’ attributes are also listed to

facilitate the experimental result analysis5. As can be seen, for the

case of the first user with the given brown skirt, although both

our MG-PFCM and its derivative w/o attribute give the correct

prediction, our MG-PFCM assigns a much higher score to the pos-

itive item than the negative one. By contrast, w/o attribute gives

the former a slightly higher score than the latter one. Namely, our

model has the high confidence than its derivative. This may be

due to that incorporating the attribute entities in FPCM enables

our model MG-PFCM to learn the “floral pattern” that the user

prefers for tops, and accordingly gives the positive item with the

“floral pattern” a higher score. Similarly, the same phenomenon can

be observed in the second case. As can be seen, the second user

tends to prefer bottoms of the category “long pants” to match tops,

which can be more easily captured by our MG-PFCM rather than

the w/o attribute derivative. Meanwhile, as the negative item is

a black skirt, which cannot go well with the beige cardigan, our

MG-PFCM assigns a much higher score to the positive item, while

w/o attribute only rates a slightly higher score to it, as compared

with the negative one. As for the last case, as we can see that the

third user prefers “long skirts” for blouses. The positive item is a

black long skirt, looking like the long pants, while the negative

5Due to the limited space, we did not provide the text description of the items.

one is the long pants looking like a long skirt. Then with the help

of their category attributes, our MG-PFCM correctly selects the

compatible item for the given top, while the w/o attribute method

gives the wrong judgment. Overall, based upon these case studies,

we can confirm the effectiveness of our method, and the benefit of

incorporating the attribute information in the context of PFCM.

5 CONCLUSION AND FUTUREWORK

In this work, we solve the personalized fashion compatibility model-

ing problem by organizing the various fashion entities and relations

into a unified heterogeneous graph, and present a novel metapath-

guided personalized compatibility modeling (MG-PFCM) scheme

to learn entity embeddings. Extensive experiments have been con-

ducted on the public dataset IQON3000, which demonstrates the

superiority of our model over existing methods. The ablation study

verifies the importance of each key module, like jointly considering

the text, image, and attribute information of items towards PFCM,

the constrastive regularization as well as using a non-position trans-

former to fulfil the semantic-enhanced embedding fusion. Moreover,

experimental results show that our model is insensitive to the num-

bers of transformer and GAT layers, which enables the model to

perform well with fewer parameters.

The limitation of our work is that currently we are only able

to judge the compatibility degree of a bottom (top) to the given

top (bottom) for a specific user. In fact, each outfit usually involves

not only the top and bottom, but also other items like shoes and

accessories. Accordingly, in future, we will extend our work to

explore PFCM for outfits with unfixed number of composing items.
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