

Simple but Effective Raw-Data Level Multimodal Fusion for Composed Image Retrieval

Haokun Wen¹, Xuemeng Song^{2*}, Xiaolin Chen², Yinwei Wei³, Liqiang Nie^{1*}, and Tat-Seng Chua⁴

1 Harbin Institute of Technology (Shenzhen), Shenzhen, China
2 Shandong University, Qingdao, China
3 Monash University, Melbourne, Australia
4 National University of Singapore, Singapore

whenhaokun@gmail.com

Background

Related Work

D Motivation

Gamework

D Experiment

Conclusion

Background

Traditional single-model query-based image retrieval system cannot well deliver the user's sophisticated search intention. Composed image retrieval (CIR) allows users using the multimodal query to express the search intentions more flexibly.

- Extending the retrieval paradigm of the image retrieval systems.
- Enhancing the interaction ability of the retrieval system.
- Commercial product search.
- Interactive intelligent robot.

Related Work

Motivation

Existing methods: the nonlinear multimodal fusion function may potentially cause the fused multimodal query feature to deviate from the original common embedding space

Our proposal: shift the multimodal fusion from the feature level to the raw-data level, which can fully leverage VLP model's multimodal encoding and cross-modal retrieval capabilities.

Framework

Dual Query Unification-based Composed Image Retrieval framework (DQU-CIR)

Unifying the multimodal query into a pure text query:

Unifying the multimodal query into an image query:

Framework

Dual Query Unification-based Composed Image Retrieval framework (DQU-CIR)

Experiment

© 2024 Haokun Wen.

□ Performance Comparison on fashion domain: FashionIQ, Shoes, and Fashion200K

Split	Method	Dresses		Shirts		Tops&Tees		Average		Aug
Spiit		R@10	R@50	R@10	R@50	R@10	R@50	R@10	R@50	Avg.
	Traditional Model-Based Methods									
	TIRG [34] (CVPR'19)	14.87	34.66	18.26	37.89	19.08	39.62	17.40	37.39	12.60
	VAL [5] (CVPR'20)	21.12	42.19	21.03	43.44	25.64	49.49	22.60	45.04	16.49
	CIRPLANT [27] (ICCV'21)	17.45	40.41	17.53	38.81	21.64	45.38	18.87	41.53	30.20
	CLVC-Net [37] (SIGIR'21)	29.85	56.47	28.75	54.76	33.50	64.00	30.70	58.41	44.56
	ARTEMIS [7] (ICLR'22)	27.16	52.40	21.78	43.64	29.20	54.83	26.05	50.29	38.17
<u>.</u>	EER [49] (TIP'22)	30.02	55.44	25.32	49.87	33.20	60.34	29.51	55.22	42.37
ilqi	CRR [48] (MM'22)	30.41	57.11	30.73	58.02	33.67	64.48	31.60	59.87	45.74
S-T	AMC [53] (TOMM'23)	31.73	59.25	30.67	59.08	36.21	66.60	32.87	61.64	47.26
VA	CRN [44] (TIP'23)	32.67	59.30	30.27	56.97	37.74	65.94	33.56	60.74	47.15
	CMAP [21] (TOMM'24)	36.44	64.25	34.83	60.06	41.79	69.12	37.64	64.42	51.03
	VLP Model-Based Methods									
	Prog. Lrn. [51] (SIGIR'22)	38.18	64.50	48.63	71.54	52.32	76.90	46.37	70.98	58.68
	TG-CIR [39] (MM'23)	45.22	69.66	52.60	72.52	56.14	77.10	51.32	73.09	62.21
	LIMN+ [38] (TPAMI'24)	<u>52.11</u>	75.21	<u>57.51</u>	77.92	<u>62.67</u>	82.66	57.43	78.60	<u>68.02</u>
	SPIRIT [6] (TOMM'24)	43.83	68.86	52.50	74.19	56.60	79.25	50.98	74.10	62.54
	DQU-CIR	57.63 ^{±0.24}	$78.56^{\pm0.50}$	$62.14^{\pm0.66}$	$80.38^{\pm0.15}$	$66.15^{\pm0.50}$	85.73 ^{±0.25}	61.97 ^{±0.28}	$81.56^{\pm 0.22}$	$71.77^{\pm0.17}$
	Traditional Model-Based Methods									
	TIRG [34] (CVPR'19)	14.13	34.61	13.10	30.91	14.79	34.37	14.01	33.30	23.66
	ARTEMIS [7] (ICLR'22)	25.68	51.05	21.57	44.13	28.59	55.06	25.28	50.08	37.68
plit	VLP Model-Based Methods									
Original-S _I	CLIP4CIR [1] (CVPR'22)	31.63	56.67	36.36	58.00	38.19	62.42	35.39	59.03	47.21
	Prog. Lrn. [51] (SIGIR'22)	33.60	58.90	39.45	61.78	43.96	68.33	39.02	63.00	51.01
	FAME-ViL [11] (CVPR'23)	42.19	67.38	47.64	<u>68.79</u>	<u>50.69</u>	73.07	46.84	<u>69.75</u>	<u>58.30</u>
	SPIRIT [6] (TOMM'24)	39.86	64.30	44.11	65.60	47.68	71.70	43.88	67.20	55.54
	BLIP4CIR+Bi [28] (WACV'24)	42.09	67.33	41.76	64.28	46.61	70.32	43.49	67.31	55.40
	DQU-CIR	51.90 ^{±0.64}	$74.37^{\pm0.39}$	$53.57^{\pm 0.27}$	$73.21^{\pm 0.34}$	58.48 ^{±0.46}	79.23 ^{±0.29}	$54.65^{\pm 0.38}$	75.60 ^{±0.18}	65.13 ^{±0.14}

8

Experiment

□ Performance Comparison on fashion domain: FashionIQ, Shoes, and Fashion200K

Method	R@1	R@10	R@50	Avg.	Method	R@1	R@10	R@50	Avg.
Tradition	al Model-	Based Meti	hods		Traditional Model-Based Methods				
TIRG [34] (CVPR'19)	12.60	45.45	69.39	42.48	TIDC [24] (CVDD'10)	1/1	19 5	62.0	40.1
VAL [5] (CVPR'20)	16.49	49.12	73.53	46.38	IIKG [34] (CVPR 19)	14.1	42.5	05.0	40.1
CLVC-Net [37] (SIGIR'21)	17.64	54.39	79.47	50.50	VAL [5] (CVPR'20)	22.9	50.8	72.7	48.8
ARTEMIS [7] (ICLR'22)	18.72	53.11	79.31	50.38	CLVC-Net [37] (SIGIR'21)	22.6	53.0	72.2	49.3
EER [49] (TIP'22)	20.05	56.02	79.94	52.00	ARTEMIS [7] (ICLR'22)	21.5	51.1	70.5	47.7
CRR [48] (MM'22)	18.41	56.38	79.92	51.57	FER [49] (TIP'22)	_	55 3	73 4	_
AMC [53] (TOMM'23)	19.99	56.89	79.27	52.05	ODD [49] (111 22)	04.0	55.5	70.1	F1 (
CRN [44] (TIP'23)	18.92	54.55	80.04	51.17	CRR [48] (MM ² 22)	<u>24.9</u>	56.4	/3.6	51.6
CMAP [21] (TOMM'24)	21.48	56.18	81.14	52.93	CRN [44] (TIP'23)	—	53.5	74.5	-
VLP	Model-Bas	ed Methods	s		CMAP [21] (TOMM'24)	24.2	56.9	75.3	52.1
Prog. Lrn. [51] (SIGIR'22)	22.88	58.83	84.16	55.29	VLP Mo	del-Basea	l Methods	s	
TG-CIR [39] (MM'23)	25.89	63.20	85.07	<u>58.05</u>	IIMN[38] (TPAMI'24)	_	57.2	76.6	_
LIMN+ [38] (TPAMI'24)	—	<u>68.37</u>	88.07	_			57.2	70.0	
SPIRIT [6] (TOMM'24)		56.90	81.49		SPIKII [6] (TOMM'24)	_	55.2	73.6	-
DQU-CIR	$31.47^{\pm 1.31}$	69.19 ^{±0.99}	$88.52^{\pm 0.31}$	63.06 ^{±0.69}	DQU-CIR	36.8 ^{±3.8}	67.9 ^{±2.1}	$87.8^{\pm0.3}$	64.1 ^{±1.7}

н

Experiment

© 2024 Haokun Wen.

□ Case Study

	Multimodal Query	Unified Textual Query	Unified Visual Query	Retrieved Images (Top 5)			
(a) FashionIQ	+ "has a red belt and less revealing and has more black and white"	"a woman in a black and white dress, but has a red belt and less revealing and has more black and white" λ=0.66	black white less revealing red belt black white less revealing red belt 1-λ=0.34				
(b) Shoes	"is darker in brown with plainer snake like pattern"	"a women's clogger with colorful flowers on it, but is darker in brown with plainer snake like pattern" λ=0.41	darker brown plainer snake-like pattern 1-λ=0.59				
(c) CIRR	"change focus onto a singular wild wolf, must be in full profile view and looking to the left"	"a lion and hyenas are fighting in the wild, but change focus onto a singular wild wolf, must be in full profile view and looking to the left" λ=0.54	singular wild wolf singular wild wolf soking to the left soking to the left singular wild wolf soking to the left solution solution solution </th <th>Image: Sector sector</th>	Image: Sector			

Conclusion

- We designed two training-free multimodal fusion methods at the raw-data level in the context of CIR, which can fully leverage the VLP model's multimodal encoding and cross-modal retrieval capabilities.
- We surprisingly found that directly writing descriptive words onto the image can achieve promising multimodal fusion results, which indicates the superior
 OCR potential of the image encoder of the VLP model. We believe this would inspire the multimodal learning community to approach multimodal fusion from a new perspective.
- Extensive experiments on four real-world datasets demonstrate the superiority of our method over the SOTA baselines.

Thanks for your listening!

Codes are available!